Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Electronic Devices and Semiconductor Manufacturing

Heterojunctions

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Iii-Nitride Transistors With Capacitively Coupled Contacts, Grigory Simin, Z.-J. Yang, A. Koudymov, V. Adivarahan, M. Asif Khan Jul 2006

Iii-Nitride Transistors With Capacitively Coupled Contacts, Grigory Simin, Z.-J. Yang, A. Koudymov, V. Adivarahan, M. Asif Khan

Faculty Publications

AlGaN∕GaNheterostructure field-effect transistor design using capacitively coupled contacts (C3HFET) is presented. Insulated-gate [C3 metal-oxide-semiconductor HFET(C3MOSHFET)] has also been realized. The capacitively coupled source, gate, and drain of C3 device do not require annealedOhmic contacts and can be fabricated using gate alignment-free technology. For typical AlGaN∕GaNheterostructures, the equivalent contact resistance of C3 transistors is below 0.6Ωmm. In rf-control applications, the C3HFET and especially the C3MOSHFET have much higher operating rf powers as compared to HFETs.C3 design is instrumental for studying the two-dimensional electron gas transport in other wide band gap …


Algan/Gan Heterostructure Field-Effect Transistors On Single-Crystal Bulk Aln, X. Hu, J. Deng, N. Pala, R. Gaska, M. S. Shur, C. Q. Chen, J. Yang, Grigory Simin, M. A. Khan, J. C. Rojo, L. J. Schowalter Feb 2003

Algan/Gan Heterostructure Field-Effect Transistors On Single-Crystal Bulk Aln, X. Hu, J. Deng, N. Pala, R. Gaska, M. S. Shur, C. Q. Chen, J. Yang, Grigory Simin, M. A. Khan, J. C. Rojo, L. J. Schowalter

Faculty Publications

We report on the performance of AlGaN/GaN/AlN heterostructurefield-effect transistors(HFETs) grown over slightly-off c-axis, single-crystal, bulk AlN substrates. Dc and rf characteristics of these devices were comparable to HFETs grown on semi-insulating SiC. The obtained results demonstrate that bulk AlN substrates are suitable for fabricating high-power microwave AlGaN/GaN transistors.


Maximum Current In Nitride-Based Heterostructure Field-Effect Transistors, A. Koudymov, H. Fatima, Grigory Simin, J. Yang, M. Asif Khan, A. Tarakji, X. Hu, M. S. Shur, R. Gaska Apr 2002

Maximum Current In Nitride-Based Heterostructure Field-Effect Transistors, A. Koudymov, H. Fatima, Grigory Simin, J. Yang, M. Asif Khan, A. Tarakji, X. Hu, M. S. Shur, R. Gaska

Faculty Publications

We present experimental and modeling results on the gate-length dependence of the maximum current that can be achieved in GaN-based heterostructurefield-effect transistors(HFETs) and metal–oxide–semiconductor HFETs (MOSHFETs). Our results show that the factor limiting the maximum current in the HFETs is the forward gate leakage current. In the MOSHFETs, the gate leakage current is suppressed and the overflow of the two dimensional electron gas into the AlGaN barrier region becomes the most important factor limiting the maximum current. Therefore, the maximum current is substantially higher in MOSHFETs than in HFETs. The measured maximum current increases with a decrease in the gate …


Si3N4/Algan/Gan-Metal-Insulator-Semiconductor Heterostructure Field-Effect Transistors, X. Hu, A. Koudymov, Grigory Simin, J. Yang, M. Asif Khan, A. Tarakji, M. S. Shur, R. Gaska Oct 2001

Si3N4/Algan/Gan-Metal-Insulator-Semiconductor Heterostructure Field-Effect Transistors, X. Hu, A. Koudymov, Grigory Simin, J. Yang, M. Asif Khan, A. Tarakji, M. S. Shur, R. Gaska

Faculty Publications

We report on a metal–insulator–semiconductor heterostructurefield-effect transistor (MISHFET) using Si3N4 film simultaneously for channel passivation and as a gate insulator. This design results in increased radio-frequency (rf) powers by reduction of the current collapse and it reduces the gate leakage currents by four orders of magnitude. A MISHFET room temperature gate current of about 90 pA/mm increases to only 1000 pA/mm at ambient temperature as high as 300 °C. Pulsed measurements show that unlike metal–oxide–semiconductor HFETs and regular HFETs, in a Si3N4 MISHFET, the gate voltage amplitude required for current collapse is much higher …


Effect Of Gate Leakage Current On Noise Properties Of Algan/Gan Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang Dec 2000

Effect Of Gate Leakage Current On Noise Properties Of Algan/Gan Field Effect Transistors, S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, Grigory Simin, X. Hu, J. Yang

Faculty Publications

The effect of the gate leakage current fluctuations on noiseproperties of AlGaN/GaN heterostructurefield effect transistors(HFETs) has been studied in conventional HFET structures and in AlGaN/GaN metal-oxide-semiconductorheterostructurefield effect transistors (MOS-HFETs). The comparison of the noiseproperties of conventional AlGaN/GaN HFETs and AlGaN/GaN MOS-HFETs fabricated on the same wafer, allowed us to estimate the contribution of the gate currentnoise to the HFET’s output noise. The effect of the gate current fluctuations on output noiseproperties of HFETs depends on the level of noise in the AlGaN/GaN HFETs. For the transistors with a relatively high magnitude of the Hooge parameter α∼10−3, even a …


Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur Aug 2000

Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur

Faculty Publications

We report on AlGaN/GaN metal–oxide–semiconductor heterostructurefield-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaNheterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 …