Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Electronic Devices and Semiconductor Manufacturing

2016

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Thermal Management Using Mems Bimorph Cantilever Beams, Ronald A. Coutu Jr., Robert S. Lafleur, John P. Walton, Laverne A. Starman Sep 2016

Thermal Management Using Mems Bimorph Cantilever Beams, Ronald A. Coutu Jr., Robert S. Lafleur, John P. Walton, Laverne A. Starman

Faculty Publications

This paper examines a passive cooling technique using microelectromechanical systems (MEMS) for localized thermal management of electronic devices. The prototype was designed using analytic equations, simulated using finite element methods (FEM), and fabricated using the commercial PolyMUMPs™ process. The system consisted of an electronic device simulator (EDS) and MEMS bimorph cantilever beams (MBCB) array with beams lengths of 200, 250, and 300 μm that were tested to characterize deflection and thermal behavior. The specific beam lengths were chosen to actuate in response to heating associated with the EDS (i.e. the longest beams actuated first corresponding to the hottest portion of …


Direct Bandgap Cross-Over Point Of Ge1-YSnY Grown On Si Estimated Through Temperature-Dependent Photoluminescence Studies, Thomas R. Harris, Mee-Yi Ryu, Yung Kee Yeo, Buguo Wang, C. L. Senaratne Aug 2016

Direct Bandgap Cross-Over Point Of Ge1-YSnY Grown On Si Estimated Through Temperature-Dependent Photoluminescence Studies, Thomas R. Harris, Mee-Yi Ryu, Yung Kee Yeo, Buguo Wang, C. L. Senaratne

Faculty Publications

Epitaxial Ge1-ySny (y = 0%–7.5%) alloys grown on either Si or Ge-buffered Si substrates by chemical vapor deposition were studied as a function of Sn content using temperature-dependent photoluminescence (PL). PL emission peaks from both the direct bandgap (Γ-valley) and the indirect bandgap (L-valley) to the valence band (denoted by ED and EID, respectively) were clearly observed at 125 and 175 K for most Ge1-ySny samples studied. At 300 K, however, all of the samples exhibited dominant ED emission with either very weak or no measureable EID emission. At 10 K, …