Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Thesis and Dissertation Repository

Materials Science and Engineering

Mechanical properties

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Characterization Of Material For Composite Automotive Components, Thomas J. Chang Dec 2021

Characterization Of Material For Composite Automotive Components, Thomas J. Chang

Electronic Thesis and Dissertation Repository

A composite had been widely used for the lightweighting purpose amid increasing environmental concerns. Among composite manufacturing processes, compression molding is widely used for automotive parts. During compression molding, the mold geometry and molding process conditions significantly influence the fiber configuration and the mechanical performance.

Hence, this thesis aims to characterize the microstructural and mechanical properties of the complex shaped composite automotive components: outer seatback and inner seatback. Both parts were compression molded using commercial glass mat thermoplastic sheet with long glass fibers (30mm-50mm) embedded in the polyamide resin. The microstructural characterization results showed that the microstructural properties are influenced …


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal Feb 2018

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale, hence the …


Synthesis, Characterization And Applications Of Lignin-Based Epoxy Resins, Fatemeh Ferdosian Apr 2015

Synthesis, Characterization And Applications Of Lignin-Based Epoxy Resins, Fatemeh Ferdosian

Electronic Thesis and Dissertation Repository

Epoxy resin is one of the most versatile thermosetting polymers with diverse applications. Epoxy resins are mainly produced from the reaction of bisphenol-A (BPA) and epichlorohydrin. The consumption of bisphenol-A is facing growing concerns over its carcinogenic effects and its sustainability. Lignin can be a promising renewable substitute of bisphenol-A in the synthesis of epoxy resins.

In this thesis work, a novel method has been developed for the synthesis of bio-based epoxy resins with reduced side reactions, employing de-polymerized lignin from organosolv lignin (DOL), kraft lignin (DKL) and hydrolysis lignin (DHL) under alkaline condition in the presence of a phase …


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo Apr 2013

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this …