Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

The Influence Of Processing And Additives On Cellulose Nanofiber Properties For Orthopedic Application, Mitchell P. Chesley Aug 2022

The Influence Of Processing And Additives On Cellulose Nanofiber Properties For Orthopedic Application, Mitchell P. Chesley

Electronic Theses and Dissertations

Current orthopedics are separated into three different classes of materials, metals, polymers, and ceramics. While these devices have had success throughout the years they are not without their faults. Metallic devices for example are usually extraordinarily stiff when compared with the surrounding bone. This difference in stiffness induces localized stress-shielding promoting cortical atrophy, which can lead to osteoporosis. Polymers while having the capacity of being biodegradable and bioabsorbable also have the potential to incite localized demineralization and weakness in surrounding bone. A result of breakdown byproducts not efficiently being evacuated from the area, which additionally acts as catalysts expediating the …


Joining Methods For Continuous Fiber Reinforced Thermoplastic Composites In Structural Applications, Andrew Moran May 2022

Joining Methods For Continuous Fiber Reinforced Thermoplastic Composites In Structural Applications, Andrew Moran

Electronic Theses and Dissertations

Continuous fiber reinforced thermoplastic (CFRTP) composites have been proposed as an alternative to metals in structural applications. CFRTP composites can be used to create structures that are lighter weight, have better resistance to environmental factors, and have the potential to be recycled. However, one of the main challenges to CFRTP composites is connections between structural members. The goal of this thesis is to investigate the feasibility of joining CFRTP composites to both similar and dissimilar materials through literature review, coupon testing, design of a structural joint, and a small scale laboratory prototype of the joint. To achieve this goal the …


Understanding The Adhesion Mechanism In Mycelium-Assisted Wood Bonding, Wenjing Sun Aug 2021

Understanding The Adhesion Mechanism In Mycelium-Assisted Wood Bonding, Wenjing Sun

Electronic Theses and Dissertations

The increasing environmental awareness has led to an increased interest in developing more sustainable materials as alternatives to petroleum-derived products. Among different nature-based products, fungal-mycelium-based bio-composites have gained considerable attention in various applications. Multiple materials with different densities and structures and potential applications can be fabricated by inoculating filamentous white-rot fungi in lignocellulosic materials and other substrates. Different from lower-density as-grown foam-like mycelium composites, higher-density mycelium-lignocellulosic panels have the potential to replace commercial particleboard and fiberboard bonded by petroleum-based resins. This kind of composite can be produced by directly adding heat and pressure to the low-density foams or by assembling …


Flexure Properties Of 3d Printed Nylon Carbon Fiber Composite And Stiffness Of 3d Printed Modified Cuttlefish Bone Structure, Shashikanth Reddy Jan 2019

Flexure Properties Of 3d Printed Nylon Carbon Fiber Composite And Stiffness Of 3d Printed Modified Cuttlefish Bone Structure, Shashikanth Reddy

Electronic Theses and Dissertations

Flexure strength is one of the most widely used mechanical properties to represent the mechanical behavior of the composite. Fiber reinforcements increase the flexure strength of a composite. Specifically, there has been tremendous growth in the use of Carbon Fiber (CF) in the manufacturing industry due to its significant contribution to enhance the mechanical properties of a composite. Fiber orientation, void content, bonding between the layers (delamination), and fiber distribution are some of the factors that affect the flexure strength of a reinforced composite. The laminate (composite with reinforced layers) composites, has been a focus of study by researchers from …


Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean Dec 2018

Modeling And Simulation Of The Thermoforming Process In Thermoplastic-Matrix Composite Materials, Philip M. Bean

Electronic Theses and Dissertations

Thermoplastic-matrix composite materials have unique advantages over traditional thermosets including faster processing, improved fracture toughness, and recyclability. These and other benefits have caused increasing interest in the use of these materials in both aerospace and automotive industries. Due to the differences in behavior, these materials require a different type of manufacturing process to thermoset matrix composites. This manufacturing process generally involves using pre manufactured tape-layers. These layers, containing both thermoplastic-matrix and fiber-reinforcement, are aligned to the desired orientation, and stacked up into a “tailored blank” using an automated tape layup machine. They are then heated to the thermoplastic melting temperature …


Feasibility Of Hybrid Thermoplastic Composite-Concrete Load Bearing System, Camerin M. Seigars Aug 2018

Feasibility Of Hybrid Thermoplastic Composite-Concrete Load Bearing System, Camerin M. Seigars

Electronic Theses and Dissertations

Thermoplastic composites have many advantages over thermoset composites such as being recyclable, rapidly manufacturable, and more impact resistant. The goal of this thesis is to assess the feasibility of using thermoplastic composites in structural applications through literature review, mechanical testing, design of a load-bearing hybrid composite-concrete structures, and the implementation of thermoplastic composites for tensile reinforcement of concrete. The study had four objectives covering the stated goal.

  1. Conduct a literature review to direct thermoplastic material selection
  2. Characterize thermoplastic material mechanical properties using standardized mechanical testing
  3. Design a hybrid composite-reinforced concrete beam, and
  4. Develop thermoplastic shear connectors to develop composite action …


Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders Dec 2017

Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders

Electronic Theses and Dissertations

The purpose of this research was to investigate the use of cellulose nanofibers (CNF) compounded into an impact modified polypropylene (IMPP) matrix. A IMPP was used because it shrinks less than a PP homopolymer during FLM processing. An assessment of material properties from fused layer modeling (FLM), an additive manufacturing (AM) method, and injection molding (IM) was conducted. Results showed that material property measurements in neat PP were statistically similar between IM and FLM for density, strain at yield and flexural stiffness. Additionally, PP plus the coupling agent maleic anhydride (MA) showed statistically similar results in comparison of IM and …


Fabrication Of A Thin Silver Nanowire Composite Film And Investigation Of A Patterning Technique., Richard S. Korte 1991- Dec 2014

Fabrication Of A Thin Silver Nanowire Composite Film And Investigation Of A Patterning Technique., Richard S. Korte 1991-

Electronic Theses and Dissertations

Electrically conductive polymers encompass an exciting field of research for applications in dye-sensitized solar cells (DSSC’s). DSSC’s possess several advantages over other types of solar cells. They offer the potential for high quantum efficiency, solar conversion efficiency approaching that of traditional silicon panels, rapid charge transfer kinetics for photo-excited electrons, mechanical flexibility, and cost efficient manufacturing processes. However, key drawbacks to their large scale production and performance lifetime lie in their reliance on costly indium tin oxide (ITO), fluorinated tin oxide (FTO), and platinum for electrode materials, and the mechanical fragility inherent to a liquid electrolyte layer component. Much of …


Stress Corrosion Cracking In Polymer Matrix Glass Fiber Composites, Jonathan Kosak Jun 2014

Stress Corrosion Cracking In Polymer Matrix Glass Fiber Composites, Jonathan Kosak

Electronic Theses and Dissertations

With the use of Polymer Matrix Glass Fiber Composites ever expanding, understanding conditions that lead to failure before expected service life is of increasing importance. Stress Corrosion Cracking (SCC) has proven to be one such example of conditions found in use in high voltage transmission line applications that leads to brittle fracture of polymer matrix composites.

SCC has been proven to be the result of acid buildup on the lines due to corona discharges and water buildup. This acid leaches minerals from the fibers, leading to fracture at low loads and service life. In order to combat this problem, efforts …


Development Of Nitrogen Concentration During Cryomilling Of Aluminum Composites, Clara Hofmeister Jan 2013

Development Of Nitrogen Concentration During Cryomilling Of Aluminum Composites, Clara Hofmeister

Electronic Theses and Dissertations

The ideal properties of a structural material are light weight with extensive strength and ductility. A composite with high strength and tailorable ductility was developed consisting of nanocrystalline AA5083, boron carbide and coarser grained AA5083. The microstructure was determined through optical microscopy and transmission electron microscopy. A technique was developed to determine the nitrogen concentration of an AA5083 composite from secondary ion mass spectrometry utilizing a nitrogen ionimplanted standard. Aluminum nitride and amorphous nitrogen-rich dispersoids were found in the nanocrystalline aluminum grain boundaries. Nitrogen concentration increased as a function of cryomilling time up to 72hours. A greater nitrogen concentration resulted …


Feasibility Study Of Lightweight High-Strength Hollow Core Balsa-Frp Composite Beams Under Flexure, Kevin O'Neill Jan 2010

Feasibility Study Of Lightweight High-Strength Hollow Core Balsa-Frp Composite Beams Under Flexure, Kevin O'Neill

Electronic Theses and Dissertations

The United States of America's Military, more specifically the Army, has since the late 1990's had a vested interest in the development of super-lightweight, portable, short-span composite bridge and decking components to replace aging heavy metal-alloy machine driven modular systems. The following study looks at the feasibility of using balsa wood as the structural core material in fiber reinforced polymer (FRP) wrapped hollow-core composites in short-span bridge applications. The balsa provides shear resistance and the FRP the flexural resistance, resulting in extremely high strength-to-weight and strength-to-depth ratios. Several scaled short span specimens were constructed and tested using a variety of …


Flexural Mechanical Durability Of Concrete Beams Strengthened By Externally Bonded Carbon Fiber Reinforced Polymer Sheets, Michael Olka Jan 2009

Flexural Mechanical Durability Of Concrete Beams Strengthened By Externally Bonded Carbon Fiber Reinforced Polymer Sheets, Michael Olka

Electronic Theses and Dissertations

About 77,600 bridges throughout the United States in the Federal Highway Association (FHWA) bridge database are listed as structurally deficient. This has created a need to either replace or strengthen bridges quickly and efficiently. Due to high costs for total replacement of deficient bridges, strengthening of existing bridges is a more economical alternative. A technique that has been developing over the past two decades is the strengthening of bridges using carbon fiber reinforced polymer (CFRP) sheets. The CFRP sheets are attached to the bottom of the bridge girders using structural adhesives so that the CFRP becomes an integral part of …


Prevention Of Environmentally Induced Degradation In Carbon/Epoxy Composite Material Via Implementation Of A Polymer Based Coati, Bradford Tipton Jan 2008

Prevention Of Environmentally Induced Degradation In Carbon/Epoxy Composite Material Via Implementation Of A Polymer Based Coati, Bradford Tipton

Electronic Theses and Dissertations

As the use of fiber reinforced plastics increases in such industries as aerospace, wind energy, and sporting goods, factors effecting long-term durability, such as environmental exposure, are of increasing interest. The primary objectives of this study were to examine the effects of extensive environmental exposure (specifically UV radiation and moisture) on carbon/epoxy composite laminate structures and to determine the relative effectiveness of polymer-based coatings at mitigating degradation incurred due to such exposure. Carbon/epoxy composite specimens, both coated and uncoated, were subjected to accelerated weathering in which prolonged outdoor exposure was simulated by controlling the radiation wavelength (in the UV region), …