Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electronic Theses and Dissertations

South Dakota State University

Perovskite

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Tailoring The Grain Boundaries Of Wide-Bandgap Perovskite Solar Cells By Molecular Engineering, Khalid Emshadi Jan 2020

Tailoring The Grain Boundaries Of Wide-Bandgap Perovskite Solar Cells By Molecular Engineering, Khalid Emshadi

Electronic Theses and Dissertations

Due to the attraction of fabricating highly efficient tandem solar cells, wide-bandgap perovskite solar cells have attracted substantial interest in recent years. However, polycrystalline perovskite thin-films show the existence of trap states at grain boundaries, which diminish the optoelectronic properties of the perovskite and thus remains a challenge. This research demonstrates a one-step solution-processing of the [MA0.9Cs0.1Pb(I0.6Br0.4)3] wide-bandgap perovskite using Phenylhydrazine Iodide with amino groups to successfully passivate the trap density within grain boundaries and increase the perovskite grain size. The reinforced morphology and grain boundaries treatment considerably enhanced the photovoltaic performance …


Engineering Of Photo-Rechargeable Energy Storage, Ashim Gurung Jan 2017

Engineering Of Photo-Rechargeable Energy Storage, Ashim Gurung

Electronic Theses and Dissertations

Solar photovoltaics (PV) is a very promising renewable energy technologies as it is abundant and pollution-free. However, the major drawback of PV power is its intermittency. Integration of batteries with solar modules can reduce overall PV system costs and increase the practicality of PV power. Integration of the photovoltaic cells with supercapacitor storage proved feasibility of combined photovoltaic energy generation and storage but the supercapacitors had low energy storage capacity. Photovoltaic cells with integrated Li-ion batteries as energy storage were demonstrated but had a complex structure due to multiple PV cells; low efficiency due to a mismatch between the PV …


Fully Solution Processed Pedot:Pss And Silver Nanowire Semi-Transparent Electrodes For Thin Film Solar Cells, Bjorn Vaagensmith Jan 2016

Fully Solution Processed Pedot:Pss And Silver Nanowire Semi-Transparent Electrodes For Thin Film Solar Cells, Bjorn Vaagensmith

Electronic Theses and Dissertations

Building integrated photovoltaics (BIPV), such as semitransparent organic solar cells (OSC) for power generating windows, is a promising method for implementing renewable energy under the looming threat of depleting fossil fuels. OSC require a solution processed transparent electrode to be cost effective; but typically employ a nonsolution processed indium tin oxide (ITO) transparent electrode. PEDOT:PSS and silver nanowire transparent electrodes have emerged as a promising alternative to ITO and are solution processed compatible. However, PEDOT:PSS requires a strong acid treatment, which is incompatible with high throughput solution processed fabrication techniques. Silver nanowires suffer from a short lifetime when subject to …


Lead Free Ch3nh3sni3 Perovskite Thin-Film With P-Type Semiconducting Nature And Metal-Like Conductivity, Anastasiia Iefanova Jan 2016

Lead Free Ch3nh3sni3 Perovskite Thin-Film With P-Type Semiconducting Nature And Metal-Like Conductivity, Anastasiia Iefanova

Electronic Theses and Dissertations

CH3NH3SnI3 and CH3NH3PbI3 have become very promising light absorbing materials for photovoltaic devices over the last several years. CH3NH3PbI3 based perovskite solar cells have reached a solar-to-electricity conversion efficiency of ~ 22%. Nevertheless, CH3NH3PbI3 perovskite solar cells contain lead, which has serious consequences for the environment and human health. In this work, the lead was replaced with less toxic tin. Lead free CH3NH3SnI3 perovskite thin film was prepared by two low temperature solution processing methods and characterized using various tools such as Xray Diffraction (XRD) and absorption spectroscopy (UV-VIS). The distinctive p-type semiconducting nature and metal like conductivity of CH3NH3SnI3 …