Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Evaluating The Impact Of Increased Cycling On Thermal Power Plants Due To Wind Energy Penetration In The Midwest: A Case Study, Joscelyne Larson Jan 2023

Evaluating The Impact Of Increased Cycling On Thermal Power Plants Due To Wind Energy Penetration In The Midwest: A Case Study, Joscelyne Larson

Electronic Theses and Dissertations

One of the most significant shifts in the mix of U.S. electricity generation over the past few years has been the rapid expansion of renewable energy resources, especially solar and wind. However, fossil fuels are still necessary to fulfill the world’s energy requirements. Despite efforts to increase the use of renewable energy sources, these sources can be at times unreliable, causing countries around the world to continue to rely on base load units such as coal and natural gas. This decrease in fossil fuels and increase in renewable energy sources presents many complex issues in terms of power system planning, …


A Computational Fluid Dynamics Analysis Of The Temperature And Impurity Profiles In The Protodune-Sp Neutrino Detector, Jenna Harrison Jan 2022

A Computational Fluid Dynamics Analysis Of The Temperature And Impurity Profiles In The Protodune-Sp Neutrino Detector, Jenna Harrison

Electronic Theses and Dissertations

Computational fluid dynamics (CFD) models of the ProtoDUNE single-phase detector were developed, refined, and analyzed. The ProtoDUNE single-phase detector is a prototype detector that is part of the Deep Underground Neutrino Experiment, an international research collaboration aimed at better understanding neutrinos and the role they play in our universe. The ProtoDUNE single-phase detector is used to gather data and inform design changes for the full-sized far detector prior to its construction. The effects of certain geometric features and heat sources on the thermal profiles within the liquid region of the detector were investigated in a set of parametric studies. The …


Two-Dimensional Nanomaterials And Their Composites For Electrochemical Detection Of Toxic Mercury Ions In Water, Md Tawabur Rahman Jan 2020

Two-Dimensional Nanomaterials And Their Composites For Electrochemical Detection Of Toxic Mercury Ions In Water, Md Tawabur Rahman

Electronic Theses and Dissertations

The presence of trace amounts of mercury ion (Hg2+) in drinking water has a detrimental effect on human health. The development of an electrochemical sensor for Hg2+ detection is still challenging to obtain ultra-trace sensitivity, excellent selectivity, wide Linear Detection Ranges (LDRs), and ultra-low detection limit. This work presents an electrochemical sensor based on two-dimensional nanomaterials and their composites for the enhanced sensing of Hg2+ in water. Graphene oxide (GO)-silver nanowires (AgNWs) composite and metallic 1T phase tungsten disulfide (WS2) microflowers were utilized for the fabrication of electrochemical sensors using drop-casting. Under the optimized experimental conditions, …


Activated Carbon Preparation And Modification For Adsorption, Yuhe Cao Jan 2017

Activated Carbon Preparation And Modification For Adsorption, Yuhe Cao

Electronic Theses and Dissertations

Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation …


Advanced Carbon Materials Based Electrodes For High Performance Symmetric Supercapacitors, Keliang Wang Jan 2017

Advanced Carbon Materials Based Electrodes For High Performance Symmetric Supercapacitors, Keliang Wang

Electronic Theses and Dissertations

Supercapacitors have received considerable attention due to their high energy density, long life time, rapid charge/discharge rate, and because they are environmental friendly technology. Electrode materials play a key role in the final performance of supercapacitors. Carbon, usually used as symmetric supercapacitors electrode materials, exhibit extraordinary stability in harsh electrolyte and electrochemical performance owing to its physical and chemical properties. In addition, porous structure originated from activation, excellent electrical conductivity, sustainability, wide availability and low cost further offering the improvement in electrochemical performance and make it to be a promising electrode material for symmetric supercapacitors. Considering the factors affected electrochemical …


Designing And Development Of A Photobioreactor For Optimizing The Growth Of Micro Algae And Studying Its Growth Parameters, Sarmila Katuwal Jan 2017

Designing And Development Of A Photobioreactor For Optimizing The Growth Of Micro Algae And Studying Its Growth Parameters, Sarmila Katuwal

Electronic Theses and Dissertations

This thesis presents the estimated value of materials required to grow 1g of biomass and the analysis of the light intensity with respect to flow path and flow rate. This thesis aims to design the sparger for a flat plate Photobioreactor, study the flow patterns at different flow rate of air flow and check the performance of flat plate PBR by growing the cyanobacteria. The estimated value to produce 1g of biomass (C44.6H7O25N7.68P0.9S0.3) was 0.099g of N, 0.493g of C, 0.160 g of Na, 0.026 g of P, …


Green Thermosetting Factory: Novel Star-Shaped Bio-Based Systems And Their Thermosetting Resins; Synthesis And Characterization, Arash Jahandideh Jan 2017

Green Thermosetting Factory: Novel Star-Shaped Bio-Based Systems And Their Thermosetting Resins; Synthesis And Characterization, Arash Jahandideh

Electronic Theses and Dissertations

Increasing attentions toward sustainable development, economic and environmental issues have led to many attempts at replacing the petroleum-based materials with renewables. Substitution of petroleum-based platforms with green alternative technologies is beneficiary in different ways. Using bio-renewables reduces the dependency of the national plastic industry to the petroleum resources and substantially promotes the environmental profile and sustainability of the product. It is expected that the emergence of the corn-based thermosetting industry generates substantial profits for the corn production sector. Developments in the emerging biobased thermosets are spectacular from a technological point of view. However, there are still several disadvantages associated with …


Fully Solution Processed Pedot:Pss And Silver Nanowire Semi-Transparent Electrodes For Thin Film Solar Cells, Bjorn Vaagensmith Jan 2016

Fully Solution Processed Pedot:Pss And Silver Nanowire Semi-Transparent Electrodes For Thin Film Solar Cells, Bjorn Vaagensmith

Electronic Theses and Dissertations

Building integrated photovoltaics (BIPV), such as semitransparent organic solar cells (OSC) for power generating windows, is a promising method for implementing renewable energy under the looming threat of depleting fossil fuels. OSC require a solution processed transparent electrode to be cost effective; but typically employ a nonsolution processed indium tin oxide (ITO) transparent electrode. PEDOT:PSS and silver nanowire transparent electrodes have emerged as a promising alternative to ITO and are solution processed compatible. However, PEDOT:PSS requires a strong acid treatment, which is incompatible with high throughput solution processed fabrication techniques. Silver nanowires suffer from a short lifetime when subject to …