Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson Dec 2021

Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson

Doctoral Dissertations

Fused Deposition Modeling (FDM) can be purchased for under five hundred dollars. The availability of these inexpensive systems has created a large hobbyist (or maker) community. For makers, FDM printing is used numerous uses.

With the onset of the COVID-19 pandemic, the needs for Personal Protective Equipment (PPE) skyrocketed. COVID-19 mitigation strategies such as social distancing, businesses closures, and shipping delays created significant supply shortfalls. The maker community stepped in to fill gaps in PPE supplies.

In the case of 3DP, optimization remains the domain of commercial entities. Optimization is, at best, ad-hoc for makers. With the need to PPE …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Development Of Data Science Tools For Part Qualification In Additive Manufacturing, Sujana Chandrasekar May 2021

Development Of Data Science Tools For Part Qualification In Additive Manufacturing, Sujana Chandrasekar

Doctoral Dissertations

In recent years, metal additive manufacturing processes have become popular choices for part production especially for low volume, high complexity parts. To enable widespread adoption of these methods, it is essential to understand the link between process parameters and part properties. This is particularly because additive manufacturing processes cause inherently complex thermo-mechanical cycles and drastically different local process conditions within a part, compared to conventional manufacturing processes like casting and forging. Additionally, properties of feedstock material like metal powder impact final part properties. The focus of this dissertation is on development of data-driven methods using in situ monitoring, as a …


Experimental Characterization And Crystal Plasticity Modeling Of Mechanical Properties And Microstructure Evolution Of Additively Manufactured Inconel 718 Superalloy, Saeede Ghorbanpour Jan 2021

Experimental Characterization And Crystal Plasticity Modeling Of Mechanical Properties And Microstructure Evolution Of Additively Manufactured Inconel 718 Superalloy, Saeede Ghorbanpour

Doctoral Dissertations

In this thesis, the mechanical behavior of the additively manufactured (AM) IN718 nickel-based superalloy and their correlations with the evolution of microstructure are studied comprehensively. The effects of manufacturing parameters, build orientations, and post processing procedures, i.e. standard heat treatment and hot isostatic pressing (HIP), on various mechanical properties including monotonic compression and tension strength, low cyclic fatigue performance, high cyclic fatigue behaviour, and fatigue crack growth behavior are investigated. Due to the high temperature applications of the IN718 alloy, elevated temperature properties are examined as well. Electron Backscattered Diffraction (EBSD) technique is employed to measure the initial and deformed …


Additively Manufactured Metallic Cellular Structures, Okanmisope Aziel Fashanu Jan 2021

Additively Manufactured Metallic Cellular Structures, Okanmisope Aziel Fashanu

Doctoral Dissertations

"Cellular structures are lightweight structures with excellent mechanical, thermal, and acoustic properties. They offer promise in a series of applications, including lightweight applications, sandwich cores, mechanical damping, acoustic absorption, strain isolation, and thermal management. The manufacturing of these complex cellular structures is expensive and time-consuming, which hinders the adoption of these structures in many industries. Advancement in manufacturing technologies, such as additive manufacturing (AM), however, have changed this. AM allows for the rapid and less expensive manufacturing of complex cellular structures. This work aimed to investigate the performance of additively manufactured cellular structures for lightweight and sandwich core applications. In …


Layer-To-Layer Feedback Control For Direct Energy Deposition Additive Manufacturing, Michelle Gegel Jan 2021

Layer-To-Layer Feedback Control For Direct Energy Deposition Additive Manufacturing, Michelle Gegel

Doctoral Dissertations

"Additive manufacturing (AM) has garnered much attention in recent years, some calling it the fourth industrial revolution. It was first used to create rapid prototypes, although recent efforts have been made to advance the technology towards production of functional parts. This requires advancement in the materials used in AM, as well as the ability to produce quality parts repeatably. More specifically, direct energy deposition (DED) of metal powders is a process capable of producing and repairing parts with complex geometries; however, it is not widely used in industry due to challenges with quality control. In this process, metal powder is …


Fabrication, Characterization Of High-Entropy Alloys And Deep Learning-Based Inspection In Metal Additive Manufacturing, Wenyuan Cui Jan 2021

Fabrication, Characterization Of High-Entropy Alloys And Deep Learning-Based Inspection In Metal Additive Manufacturing, Wenyuan Cui

Doctoral Dissertations

"Alloying has been used to confer desirable properties to materials. It typically involves the addition of small amounts of secondary elements to a primary element. In the past decade, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high- entropy alloys (HEAs) has been in vogue. In the first part, the investigation focused on the fabrication process and property assessment of the additive manufactured HEA to broaden its engineering applications. Additive manufacturing (AM) is based on manufacturing philosophy through the layer-by-layer method and accomplish the near net-shaped components …