Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar Dec 2021

Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar

Doctoral Dissertations

Long fiber thermoplastic (LFT) composite materials are increasingly used in high performance lightweight automotive, sporting, and industrial applications. LFT composites are processed with extrusion-compression molding (ECM) and/or injection molding (IM). Melt extrusion offers unique opportunities to align long fibers in a thermoplastic polymer melt. The properties of LFT materials are highly influenced by processing techniques which leads to different porosity content, fiber length distribution, and fiber orientation distribution. Hence, it is important to understand the various LFT processing techniques and their effect on mechanical, thermal, and microscopic properties.

The fundamental process-property relationships in LFT composites are investigated in this dissertation. …


Towards Higher Power Factor In Semiconductor Thermoelectrics: Bandstructure Engineering And Potential Barriers, Adithya Kommini Oct 2021

Towards Higher Power Factor In Semiconductor Thermoelectrics: Bandstructure Engineering And Potential Barriers, Adithya Kommini

Doctoral Dissertations

To keep up with the current energy demand and to sustain the growth requires efficient use of existing resources. One of the ways to improve efficiency is by converting waste heat to electricity using thermoelectrics. Thermoelectric devices work on the principle of Seebeck effect, where an applied temperature difference across the material results in a potential difference in the material. The possibility of drastic improvements in the efficiency of thermoelectric (TE) devices using semiconductor nanostructured materials renewed interest in thermoelectrics over the last three decades. Introducing confinement, interfaces, and quantum effects using nanostructures for additional control of charge and phonon …