Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Bedload Transport Sampling, Characterization And Modeling On A Southern Appalachian Ridge And Valley Stream, Patrick Lasater Mcmahon Dec 2013

Bedload Transport Sampling, Characterization And Modeling On A Southern Appalachian Ridge And Valley Stream, Patrick Lasater Mcmahon

Doctoral Dissertations

Estimates of bedload transport rates developed from existing transport models are notoriously inaccurate(Wilcock 2001). The gravel bed models addressed in this study include the Meyer-Peter and Muller; Parker, Klingeman, and McLean; and Wilcock two-fraction models. The question of whether or not these models predict bedload transport rates in a Southern Appalachian Ridge and Valley stream is complicated by the fact that these models have only been previously assessed in terms of their agreement with bedload transport rates measured in the Western regions of the U.S. Further, due to the strongly non-linear form of bedload transport models discrete errors and cumulative …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Multiscale Modeling Of Toxoplasma Gondii, Adam Michael Sullivan Aug 2013

Multiscale Modeling Of Toxoplasma Gondii, Adam Michael Sullivan

Doctoral Dissertations

Toxoplasma gondii is a potentially deadly parasite that uses a very unique way of manipulating the cell and immune systems. To investigate the mechanics of how the parasite spreads within hosts, several interwoven topics related to the study of within-host dynamics of Toxoplasma gondii are presented here. Understanding the complicated methods of how the parasite grows, dies, invades, replicates, and evades the host immune response is the critical aim of this independent research. Understanding the processes of acute and chronic infection are studied independently, followed by modeling the two processes in the same model. Finally, the dynamic models are simulated …