Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Model Based Force Estimation And Stiffness Control For Continuum Robots, Vincent A. Aloi May 2022

Model Based Force Estimation And Stiffness Control For Continuum Robots, Vincent A. Aloi

Doctoral Dissertations

Continuum Robots are bio-inspired structures that mimic the motion of snakes, elephant trunks, octopus tentacles, etc. With good design, these robots can be naturally compliant and miniaturizable, which makes Continuum Robots ideal for traversing narrow complex environments. Their flexible design, however, prevents us from using traditional methods for controlling and estimating loading on rigid link robots.

In the first thrust of this research, we provided a novel stiffness control law that alters the behavior of an end effector during contact. This controller is applicable to any continuum robot where a method for sensing or estimating tip forces and pose exists. …


Exploration Of The Stability Of Multicomponent Metal Halide Perovskites Utilizing Automated, High-Throughput Methods And Machine Learning, Katherine N. Higgins May 2022

Exploration Of The Stability Of Multicomponent Metal Halide Perovskites Utilizing Automated, High-Throughput Methods And Machine Learning, Katherine N. Higgins

Doctoral Dissertations

Because of their outstanding optoelectronic properties and low-cost, solution-based fabrication, metal halide perovskites (MHP) are appealing candidates for a variety of applications, such as photovoltaics, light-emitting diodes, photodetectors, and ionizing radiation detectors. However, concerns of this material’s stability in pure or device-integrated form under external stimuli, such as light, humidity, oxygen, and heat, have prohibited the widespread utilizations of MHPs. It is well established that alloying can lessen detrimental effects of these factors. To date, a small portion of alloyed compositions have been investigated compared to the thousands of possible perovskites proposed theoretically. Conventional approaches to materials discovery and optimization, …


Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson Dec 2017

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson

Doctoral Dissertations

The Tracking Fluoroscope System II, a mobile robotic fluoroscopy platform, developed and built at the University of Tennessee, Knoxville, presently employs a pattern matching algorithm in order to identify and track a marker placed upon a subject’s knee joint of interest. The purpose of this research is to generate a new tracking algorithm based around the human gait cycle for prediction and improving the overall accuracy of joint tracking.

This research centers around processing the acquired x-ray images of the desired knee joint obtained during standard clinical operation in order to identify and track directly through the acquired image. Due …


Modeling, Analysis, Force Sensing And Control Of Continuum Robots For Minimally Invasive Surgery, Caroline Bryson Black May 2017

Modeling, Analysis, Force Sensing And Control Of Continuum Robots For Minimally Invasive Surgery, Caroline Bryson Black

Doctoral Dissertations

This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and …


3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang Aug 2014

3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang

Doctoral Dissertations

The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives.

As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in practical …


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …


Telerobotic Sensor-Based Tool Control Derived From Behavior-Based Robotics Concepts, Mark William Noakes May 2011

Telerobotic Sensor-Based Tool Control Derived From Behavior-Based Robotics Concepts, Mark William Noakes

Doctoral Dissertations

@font-face { font-family: "TimesNewRoman"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }

Teleoperated task execution for hazardous environments is slow and requires highly skilled operators. Attempts to implement telerobotic assists to improve efficiency have been demonstrated in constrained laboratory environments but are not being used in the field because they are not appropriate for use on actual remote systems operating in complex unstructured environments using typical operators. This work describes a methodology for combining select concepts from behavior-based systems with telerobotic tool control in a way that is compatible …


Scene Segmentation And Object Classification For Place Recognition, Chang Cheng Aug 2010

Scene Segmentation And Object Classification For Place Recognition, Chang Cheng

Doctoral Dissertations

This dissertation tries to solve the place recognition and loop closing problem in a way similar to human visual system. First, a novel image segmentation algorithm is developed. The image segmentation algorithm is based on a Perceptual Organization model, which allows the image segmentation algorithm to ‘perceive’ the special structural relations among the constituent parts of an unknown object and hence to group them together without object-specific knowledge.

Then a new object recognition method is developed. Based on the fairly accurate segmentations generated by the image segmentation algorithm, an informative object description that includes not only the appearance (colors and …