Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Deep Learning Based Power System Stability Assessment For Reduced Wecc System, Yinfeng Zhao Aug 2023

Deep Learning Based Power System Stability Assessment For Reduced Wecc System, Yinfeng Zhao

Doctoral Dissertations

Power system stability is the ability of power system, for a giving initial operating condition, to reach a new operation condition with most of the system variables bounded in normal range after subjecting to a short or long disturbance. Traditional power system stability mainly uses time-domain simulation which is very time consuming and only appropriate for offline assessment.

Nowadays, with increasing penetration of inverter based renewable, large-scale distributed energy storage integration and operation uncertainty brought by weather and electricity market, system dynamic and operating condition is more dramatic, and traditional power system stability assessment based on scheduling may not be …


Learning With Limited Labeled Data For Image And Video Understanding, Razieh Kaviani Baghbaderani Aug 2022

Learning With Limited Labeled Data For Image And Video Understanding, Razieh Kaviani Baghbaderani

Doctoral Dissertations

Deep learning-based algorithms have remarkably improved the performance in many computer vision tasks. However, deep networks often demand a large-scale and carefully annotated dataset and sufficient sample coverage of every training category. However, it is not practical in many real-world applications where only a few examples may be available, or the data annotation is costly and require expert knowledge. To mitigate this issue, learning with limited data has gained considerable attention and is investigated thorough different learning methods, including few-shot learning, weakly/semi supervised learning, open-set learning, etc.

In this work, the classification problem is investigated under an open-world assumption to …


Qualitative And Quantitative Improvements For Positron Emission Tomography Using Different Motion Correction Methodologies, Tasmia Rahman Tumpa Dec 2021

Qualitative And Quantitative Improvements For Positron Emission Tomography Using Different Motion Correction Methodologies, Tasmia Rahman Tumpa

Doctoral Dissertations

Positron Emission Tomography (PET) data suffers from low image quality and quantitative accuracy due to different kinds of motion of patients during imaging. Hardware-based motion correction is currently the standard; however, is limited by several constraints, the most important of which is retroactive data correction. Data-driven techniques to perform motion correction in this regard are active areas of research. The motivation behind this work lies in developing a complete data-driven approach to address both motion detection and correction. The work first presents an algorithm based on the positron emission particle tracking (PEPT) technique and makes use of time-of-flight (TOF) information …


Deep Learning For Digitized Histology Image Analysis, Sudhir Sornapudi Jan 2020

Deep Learning For Digitized Histology Image Analysis, Sudhir Sornapudi

Doctoral Dissertations

“Cervical cancer is the fourth most frequent cancer that affects women worldwide. Assessment of cervical intraepithelial neoplasia (CIN) through histopathology remains as the standard for absolute determination of cancer. The examination of tissue samples under a microscope requires considerable time and effort from expert pathologists. There is a need to design an automated tool to assist pathologists for digitized histology slide analysis. Pre-cervical cancer is generally determined by examining the CIN which is the growth of atypical cells from the basement membrane (bottom) to the top of the epithelium. It has four grades, including: Normal, CIN1, CIN2, and CIN3. In …


Scalable Hardware Efficient Deep Spatio-Temporal Inference Networks, Steven Robert Young Dec 2014

Scalable Hardware Efficient Deep Spatio-Temporal Inference Networks, Steven Robert Young

Doctoral Dissertations

Deep machine learning (DML) is a promising field of research that has enjoyed much success in recent years. Two of the predominant deep learning architectures studied in the literature are Convolutional Neural Networks (CNNs) and Deep Belief Networks (DBNs). Both have been successfully applied to many standard benchmarks with a primary focus on machine vision and speech processing domains.

Many real-world applications involve time-varying signals and, consequently, necessitate models that efficiently represent both temporal and spatial attributes. However, neither DBNs nor CNNs are designed to naturally capture temporal dependencies in observed data, often resulting in the inadequate transformation of spatio-temporal …


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. …