Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Australian Institute for Innovative Materials - Papers

Polymer

Articles 1 - 29 of 29

Full-Text Articles in Engineering

Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen And Hydrogen Evolution From Water In A Photoelectrochemical Concentration Cell (Pecc), Mohammed Alsultan, Khalid Zainulabdeen, Pawel W. Wagner, Gerhard F. Swiegers, Holly Warren Jan 2019

Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen And Hydrogen Evolution From Water In A Photoelectrochemical Concentration Cell (Pecc), Mohammed Alsultan, Khalid Zainulabdeen, Pawel W. Wagner, Gerhard F. Swiegers, Holly Warren

Australian Institute for Innovative Materials - Papers

Light-driven water-splitting to generate hydrogen and oxygen from water is typically carried out in an electrochemical cell with an external voltage greater than 1.23 V applied between the electrodes. In this work, we examined the use of a concentration/chemical bias as a means of facilitating water-splitting under light illumination without the need for such an externally applied voltage. Such a concentration bias was created by employing a pH differential in the liquid electrolytes within the O2-generating anode half-cell and the H2-generating cathode half-cell. A novel, stretchable, highly ion-conductive polyacrylamide CsCl hydrogel was developed to connect the two half-cells. The key …


Electrical Stimulation With A Conductive Polymer Promotes Neurite Outgrowth And Synaptogenesis In Primary Cortical Neurons In 3d, Qingsheng Zhang, Stephen T. Beirne, Kewei Shu, Dorna Esrafilzadeh, Xu-Feng Huang, Gordon G. Wallace Jan 2018

Electrical Stimulation With A Conductive Polymer Promotes Neurite Outgrowth And Synaptogenesis In Primary Cortical Neurons In 3d, Qingsheng Zhang, Stephen T. Beirne, Kewei Shu, Dorna Esrafilzadeh, Xu-Feng Huang, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Deficits in neurite outgrowth and synaptogenesis have been recognized as an underlying developmental aetiology of psychosis. Electrical stimulation promotes neuronal induction including neurite outgrowth and branching. However, the effect of electrical stimulation using 3D electrodes on neurite outgrowth and synaptogenesis has not been explored. This study examined the effect of 3D electrical stimulation on 3D primary cortical neuronal cultures. 3D electrical stimulation improved neurite outgrowth in 3D neuronal cultures from both wild-Type and NRG1-knockout (NRG1-KO) mice. The expression of synaptophysin and PSD95 were elevated under 3D electrical stimulation. Interestingly, 3D electrical stimulation also improved neural cell aggregation as well as …


Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth Of Primary Prefrontal Cortical Neurons From Nrg1-Ko And Disc1-Li Mice, Qingsheng Zhang, Dorna Esrafilzadeh, Jeremy Micah Crook, Robert M. I Kapsa, Elise M. Stewart, Eva Tomaskovic-Crook, Gordon G. Wallace, Xu-Feng Huang Jan 2017

Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth Of Primary Prefrontal Cortical Neurons From Nrg1-Ko And Disc1-Li Mice, Qingsheng Zhang, Dorna Esrafilzadeh, Jeremy Micah Crook, Robert M. I Kapsa, Elise M. Stewart, Eva Tomaskovic-Crook, Gordon G. Wallace, Xu-Feng Huang

Australian Institute for Innovative Materials - Papers

Deficits in neurite outgrowth, possibly involving dysregulation of risk genes neuregulin-1 (NRG1) and disrupted in schizophrenia 1 (DISC1) have been implicated in psychiatric disorders including schizophrenia. Electrical stimulation using conductive polymers has been shown to stimulate neurite outgrowth of differentiating human neural stem cells. This study investigated the use of the electroactive conductive polymer polypyrrole (Ppy) to counter impaired neurite outgrowth of primary pre-frontal cortical (PFC) neurons from NRG1-knock out (NRG1-KO) and DISC1-locus impairment (DISC1-LI) mice. Whereas NRG1-KO and DISC1-LI exhibited reduced neurite length and number of neurite branches compared to wild-type controls, this was not apparent for cultures on …


Characteristics And Cadmium Extraction Performance Of Pvc/Aliquat 336 Electrospun Fibres In Comparison With Polymer Inclusion Membranes, Nurul Syazana Binti Abdul Halim, Philip G. Whitten, Long D. Nghiem Jan 2016

Characteristics And Cadmium Extraction Performance Of Pvc/Aliquat 336 Electrospun Fibres In Comparison With Polymer Inclusion Membranes, Nurul Syazana Binti Abdul Halim, Philip G. Whitten, Long D. Nghiem

Australian Institute for Innovative Materials - Papers

Electrospun fibres and polymer inclusion membranes (PIMs) were prepared from polyvinyl chloride (PVC) and Aliquat 336. Morphological and thermomechanical properties of the electrospun mats differed notably from those of PIMs. The plasticizing effect of Aliquat 336 on electrospun PVC/Aliquat 336 fibres was confirmed by the shifting of the glass transition temperature (Tg). By contrast, Aliquat 336 did not act as a plasticizer in PIMs as Tg was independent of Aliquat 336 concentration. Cadmium extraction to electrospun fibres could occur at a lower Aliquat 336 content (i.e. 6 wt.%) compared with PIMs. At 40 wt.% Aliquat 336 content, both PIMs and …


Stretchable, Weavable Coiled Carbon Nanotube/Mno2/Polymer Fiber Solid-State Supercapacitors, Changsoon Choi, Shi Hyeong Kim, Hyeon Jun Sim, Jae Ah Lee, A Young Choi, Youn Tae Kim, Xavier Lepro, Geoffrey M. Spinks, Ray H. Baughman, Seon Jeong Kim Jan 2015

Stretchable, Weavable Coiled Carbon Nanotube/Mno2/Polymer Fiber Solid-State Supercapacitors, Changsoon Choi, Shi Hyeong Kim, Hyeon Jun Sim, Jae Ah Lee, A Young Choi, Youn Tae Kim, Xavier Lepro, Geoffrey M. Spinks, Ray H. Baughman, Seon Jeong Kim

Australian Institute for Innovative Materials - Papers

Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices, and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet, and then electrochemically depositing pseudocapacitive MnO2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the …


A Bio-Friendly, Green Route To Processable, Biocompatible Graphene/Polymer Composites, Eoin Murray, Sepidar Sayyar, Brianna C. Thompson, Robert A. Gorkin Iii, David L. Officer, Gordon G. Wallace Jan 2015

A Bio-Friendly, Green Route To Processable, Biocompatible Graphene/Polymer Composites, Eoin Murray, Sepidar Sayyar, Brianna C. Thompson, Robert A. Gorkin Iii, David L. Officer, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Grapene-based polymer composites are a very promising class of compounds for tissue engineering scaffolds. However, in general the methods of synthesis are environmentally hazardous and residual toxic materials can affect the biocompatibility significantly. In this paper a simple, scalable, environmentally-friendly, microwave-assisted synthesis is described that results in conducting graphene/polycaprolactone composites that retain the processability and biocompatibility of the pristine polymer without introducing possibly hazardous reducing agents. Composites of polycaprolactone and graphene oxide were synthesised in a single step by the ring-opening polymerisation of ε-caprolactone in the presence of dispersed graphene oxide nanosheets under microwave irradiation. The graphene oxide provides a …


Bio-Interface Of Conducting Polymer-Based Materials For Neuroregeneration, Bo Weng, Jianglin Diao, Qun Xu, Yuqing Liu, Changming Li, Ailing Ding, Jun Chen Jan 2015

Bio-Interface Of Conducting Polymer-Based Materials For Neuroregeneration, Bo Weng, Jianglin Diao, Qun Xu, Yuqing Liu, Changming Li, Ailing Ding, Jun Chen

Australian Institute for Innovative Materials - Papers

Nerve system diseases like Parkinson's disease, Huntington's disease, Alzheimer's disease, etc. seriously affect thousands of patients' lives every year, making them suffer from pains and inconvenience. Recently, bio-interfaces between neural cells/tissues and polymer based biomaterials attracted worldwide attention due to the ability of polymer based biomaterials to serve as nerve conduits, drug carriers and neurites guidance platform in neuroregeneration. The role that bio-interface played and the way it interacted with neural tissues and cells have been thoroughly investigated by the researchers. In this paper we mainly focus on reviewing the bio-interface between nerve tissues/cells and advanced functional biocompatible polymers, such …


Harvesting Temperature Fluctuations As Electrical Energy Using Torsional And Tensile Polymer Muscles, Shi Hyeong Kim, Marcio Dias Lima, Mikhail E. Kozlov, Carter S. Haines, Geoffrey M. Spinks, Shazed Aziz, Changsoon Choi, Hyeon Jun Sim, Xuemin Wang, Hongbing Lu, Dong Qian, John D. W Madden, Ray H. Baughman, Seon Jeong Kim Jan 2015

Harvesting Temperature Fluctuations As Electrical Energy Using Torsional And Tensile Polymer Muscles, Shi Hyeong Kim, Marcio Dias Lima, Mikhail E. Kozlov, Carter S. Haines, Geoffrey M. Spinks, Shazed Aziz, Changsoon Choi, Hyeon Jun Sim, Xuemin Wang, Hongbing Lu, Dong Qian, John D. W Madden, Ray H. Baughman, Seon Jeong Kim

Australian Institute for Innovative Materials - Papers

Diverse means have been deployed for harvesting electrical energy from mechanical actuation produced by low-grade waste heat, but cycle rate, energy-per-cycle, device size and weight, or cost have limited applications. We report the electromagnetic harvesting of thermal energy as electrical energy using thermally powered torsional and tensile artificial muscles made from inexpensive polymer fibers used for fishing line and sewing thread. We show that a coiled 27 μm-diameter nylon muscle fiber can be driven by 16.7 °C air temperature fluctuations to spin a magnetic rotor to a peak torsional rotation speed of 70 000 rpm for over 300 000 heating-cooling …


Harvesting Temperature Fluctuations As Electrical Energy Using Torsional And Tensile Polymer Muscles, Shi Hyeong Kim, Marcio Dias Lima, Mikhail E. Kozlov, Carter S. Haines, Geoffrey M. Spinks, Shazed Aziz, Changsoon Choi, Hyeon Jun Sim, Xuemin Wang, Hongbing Lu, Dong Qian, John D. W Madden, Ray H. Baughman, Seon Jeong Kim Jan 2015

Harvesting Temperature Fluctuations As Electrical Energy Using Torsional And Tensile Polymer Muscles, Shi Hyeong Kim, Marcio Dias Lima, Mikhail E. Kozlov, Carter S. Haines, Geoffrey M. Spinks, Shazed Aziz, Changsoon Choi, Hyeon Jun Sim, Xuemin Wang, Hongbing Lu, Dong Qian, John D. W Madden, Ray H. Baughman, Seon Jeong Kim

Australian Institute for Innovative Materials - Papers

Diverse means have been deployed for harvesting electrical energy from mechanical actuation produced by low-grade waste heat, but cycle rate, energy-per-cycle, device size and weight, or cost have limited applications. We report the electromagnetic harvesting of thermal energy as electrical energy using thermally powered torsional and tensile artificial muscles made from inexpensive polymer fibers used for fishing line and sewing thread. We show that a coiled 27 μm-diameter nylon muscle fiber can be driven by 16.7 °C air temperature fluctuations to spin a magnetic rotor to a peak torsional rotation speed of 70 000 rpm for over 300 000 heating-cooling …


Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation Of Human Neural Stem Cells: A Biocompatible Platform For Translational Neural Tissue Engineering, Elise Stewart, Nao R. Kobayashi, Michael J. Higgins, Anita Quigley, Sina S. Jamali, Simon Moulton, Robert M. I Kapsa, Gordon G. Wallace, Jeremy M. Crook Jan 2015

Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation Of Human Neural Stem Cells: A Biocompatible Platform For Translational Neural Tissue Engineering, Elise Stewart, Nao R. Kobayashi, Michael J. Higgins, Anita Quigley, Sina S. Jamali, Simon Moulton, Robert M. I Kapsa, Gordon G. Wallace, Jeremy M. Crook

Australian Institute for Innovative Materials - Papers

Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation, and conductive scaffolds for cell support and tissue engineering. Here we demonstrate the utility of electroactive CP Polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and …


Influence Of Biopolymer Loading On The Physiochemical And Electrochemical Properties Of Inherently Conducting Polymer Biomaterials, Paul J. Molino, Peter C. Innis, Michael J. Higgins, Robert M. I Kapsa, Gordon G. Wallace Jan 2015

Influence Of Biopolymer Loading On The Physiochemical And Electrochemical Properties Of Inherently Conducting Polymer Biomaterials, Paul J. Molino, Peter C. Innis, Michael J. Higgins, Robert M. I Kapsa, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The physicochemical and electrochemical properties of polypyrrole (PPy) doped with the biological dopant dextran sulphate (DS) were shown to be significantly altered as a function of varying the salt concentration (0.2, 2 or 20 mg/ml) in the polymerisation electrolyte. Films grown in the presence of 0.2 mg/ml DS generated the highest potential during galvanostatic growth, with the potential decreasing with each subsequent increase in DS concentration. The electroactivity of the polymers was similar for all three DS concentrations, with the 20 mg/ml film drawing slightly more current upon reduction in PBS. Increasing the DS concentration reduced film interfacial roughness and …


Force Control Of A Tri-Layer Conducting Polymer Actuator Using Optimized Fuzzy Logic Control, Mehmet Itik, Mohammadreza Sabetghadam, Gursel Alici Jan 2014

Force Control Of A Tri-Layer Conducting Polymer Actuator Using Optimized Fuzzy Logic Control, Mehmet Itik, Mohammadreza Sabetghadam, Gursel Alici

Australian Institute for Innovative Materials - Papers

Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer …


Optical And Electrochemical Methods For Determining The Effective Area And Charge Density Of Conducting Polymer Modified Electrodes For Neural Stimulation, Alexander R. Harris, Paul Molino, Robert M. I Kapsa, Graeme M. Clarke, Antonio Paolini, Gordon G. Wallace Jan 2014

Optical And Electrochemical Methods For Determining The Effective Area And Charge Density Of Conducting Polymer Modified Electrodes For Neural Stimulation, Alexander R. Harris, Paul Molino, Robert M. I Kapsa, Graeme M. Clarke, Antonio Paolini, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Neural stimulation is used in the cochlear implant, bionic eye, and deep brain stimulation, which involves implantation of an array of electrodes into a patient's brain. The current passed through the electrodes is used to provide sensory queues or reduce symptoms associated with movement disorders and increasingly for psychological and pain therapies. Poor control of electrode properties can lead to suboptimal performance; however, there are currently no standard methods to assess them, including the electrode area and charge density. Here we demonstrate optical and electrochemical methods for measuring these electrode properties and show the charge density is dependent on electrode …


The Role Of Emissive Charge Transfer States In Two Polymer-Fullerene Organic Photovoltaic Blends: Tuning Charge Photogeneration Through The Use Of Processing Additives, Tracey M. Clarke, Jeff Peet, Christoph Lungenschmied, Nicolas Drolet, Xinhui Lu, Benjamin M. Ocko, Attila Mozer, Maria Antonietta Loi Jan 2014

The Role Of Emissive Charge Transfer States In Two Polymer-Fullerene Organic Photovoltaic Blends: Tuning Charge Photogeneration Through The Use Of Processing Additives, Tracey M. Clarke, Jeff Peet, Christoph Lungenschmied, Nicolas Drolet, Xinhui Lu, Benjamin M. Ocko, Attila Mozer, Maria Antonietta Loi

Australian Institute for Innovative Materials - Papers

The role of charge transfer (CT) states in organic photovoltaic systems has been debated in the recent literature. In this paper the device performances of two structurally analogous polymers PDTSiTTz (also known as KP115) and PCPDTTTz blended with PCBM are investigated, focusing on the effect the processing additive diiodooctane (DIO) has on morphology, charge photogeneration, and, in particular, the CT state characteristics. While DIO has a considerable beneficial effect for PCPDTTTz:PCBM photovoltaic devices, negligible effects are observed for PDTSiTTz:PCBM devices. An emissive CT state able to be quenched by DIO was observed for PCPDTTTz:PCBM, despite relatively small morphological changes. This …


3-Dimensional (3d) Fabricated Polymer Based Drug Delivery Systems, Simon Moulton, Gordon G. Wallace Jan 2014

3-Dimensional (3d) Fabricated Polymer Based Drug Delivery Systems, Simon Moulton, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the …


One-Step Synthesis Of Graphene/Polypyrrole Nanofiber Composites As Cathode Material For A Biocompatible Zinc/Polymer Battery, Sha Li, Kewei Shu, Chen Zhao, Caiyun Wang, Zaiping Guo, Gordon G. Wallace, Hua-Kun Liu Jan 2014

One-Step Synthesis Of Graphene/Polypyrrole Nanofiber Composites As Cathode Material For A Biocompatible Zinc/Polymer Battery, Sha Li, Kewei Shu, Chen Zhao, Caiyun Wang, Zaiping Guo, Gordon G. Wallace, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

The significance of developing implantable, biocompatible, miniature power sources operated in a low current range has become manifest in recent years to meet the demands of the fast-growing market for biomedical microdevices. In this work, we focus on developing high-performance cathode material for biocompatible zinc/polymer batteries utilizing biofluids as electrolyte. Conductive polymers and graphene are generally considered to be biocompatible and suitable for bioengineering applications. To harness the high electrical conductivity of graphene and the redox capability of polypyrrole (PPy), a polypyrrole fiber/graphene composite has been synthesized via a simple one-step route. This composite is highly conductive (141 S cm …


Effect Of Polymer Ligand Structures On Fluorescence Of Gold Clusters Prepared By Photoreduction, Luo Li, Zhen Li, Hui Zhang, Shoucun Zhang, Irfan Majeed, Bien Tan Jan 2013

Effect Of Polymer Ligand Structures On Fluorescence Of Gold Clusters Prepared By Photoreduction, Luo Li, Zhen Li, Hui Zhang, Shoucun Zhang, Irfan Majeed, Bien Tan

Australian Institute for Innovative Materials - Papers

Blue emission fluorescent Au5 clusters with maximum quantum yield of 20.1% were synthesized by a simple photoreduction method using three specially designed tridentate polymer ligands. The evolution of fluorescent Au nanoclusters (Au NCs) under UV irradiation was studied by fluorescence, UV-Vis and X-ray photoelectron spectroscopic techniques, suggesting that the fluorescence of Au NCs is size-dependent and is associated with the presence of Au(i) ions in the Au NCs. The effect of polymer structure on the fluorescent Au NCs has also been discussed. These highly fluorescent Au NCs have potential applications in the fabrication of optoelectronic devices and light emitting materials.


Conducting Polymer Coated Neural Recording Electrodes, Alexander R. Harris, Simon Morgan, Jun Chen, Robert M. Kapsa, Gordon G. Wallace, Antonio Paolini Jan 2013

Conducting Polymer Coated Neural Recording Electrodes, Alexander R. Harris, Simon Morgan, Jun Chen, Robert M. Kapsa, Gordon G. Wallace, Antonio Paolini

Australian Institute for Innovative Materials - Papers

Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped …


Tensile Testing Of Individual Glassy, Rubbery And Hydrogel Electrospun Polymer Nanofibres To High Strain Using The Atomic Force Microscope, Adrian Gestos, Philip G. Whitten, Geoffrey M. Spinks, Gordon G. Wallace Jan 2013

Tensile Testing Of Individual Glassy, Rubbery And Hydrogel Electrospun Polymer Nanofibres To High Strain Using The Atomic Force Microscope, Adrian Gestos, Philip G. Whitten, Geoffrey M. Spinks, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The production and use of polymer nanofibre assemblies prepared by electrospinning is now widespread. It is known that the tensile properties of electrospun polymer fibres can be different to those of bulk polymers. Here, we report a general method for measuring the tensile properties of individual electrospun nanofibres that employs a commercial atomic force microscope. Methods for preparing samples, force calibration and calculation of tensile stress and strain are described along with error estimation. By appropriate choice of AFM cantilever, it is shown that the tensile stress-strain curves can be measured for glassy, rubbery and gel polymer nanofibres. Testing can …


A Merocyanine-Based Conductive Polymer, Klaudia K. Wagner, Michele Zanoni, Anastasia Elliott, Pawel W. Wagner, Robert P. Byrne, Larisa Florea, Dermot Diamond, Keith Gordon, Gordon G. Wallace, David L. Officer Jan 2013

A Merocyanine-Based Conductive Polymer, Klaudia K. Wagner, Michele Zanoni, Anastasia Elliott, Pawel W. Wagner, Robert P. Byrne, Larisa Florea, Dermot Diamond, Keith Gordon, Gordon G. Wallace, David L. Officer

Australian Institute for Innovative Materials - Papers

We report the first example of a conducting polymer with a merocyanine incorporated into the polymer backbone by electropolymerisation of a spiropyran moiety covalently linked between two alkoxythiophene units. Utilising the known metal coordination capabilities of merocyanines, introduction of cobalt ions into the electropolymerisation led to an enhancement of the conductivity, morphology and optical properties of the polymer films.


Inkjet Printed Conductive Polymer-Based Beam-Splitters For Terahertz Applications, Benjamin S-Y Ung, Bo Weng, Roderick L. Shepherd, Derek Abbott, Christopher Fumeaux Jan 2013

Inkjet Printed Conductive Polymer-Based Beam-Splitters For Terahertz Applications, Benjamin S-Y Ung, Bo Weng, Roderick L. Shepherd, Derek Abbott, Christopher Fumeaux

Australian Institute for Innovative Materials - Papers

Terahertz beam-splitters are fabricated from conductive polymers inkjet printed onto an acetate film substrate. The principle is a significant evolution of the recently proposed ultra-thin beam-splitter realized using silver conductive paint. The splitting ratios of the beam-splitters are dependent on the thickness and conductivity of the conductive polymer layer, allowing for any splitting ratio to be achieved accurately from a controlled printing process. As the processing technology of conductive polymers matures, this approach will allow for low cost and accurate fabrication of THz beam-splitters with a predefined near frequency-independent splitting ratio, in contrast to the commonly used float zone silicon …


Multifunctional Conducting Polymer Fibres For Drug Delivery Applications, Dorna Esrafilzadeh, Simon E. Moulton, Joselito M. Razal, Elise M. Stewart, Gordon G. Wallace Jan 2013

Multifunctional Conducting Polymer Fibres For Drug Delivery Applications, Dorna Esrafilzadeh, Simon E. Moulton, Joselito M. Razal, Elise M. Stewart, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Advances in the fabrication of neuroprosthetic electrodes have attracted considerable interest from biomedical researchers. These electrodes are incorporated into a neuroprosthetic device capable of, electrically stimulating and recording of neuron activity. Critical to the successful application of these electrodes is their biocompatibility, stable conductivity, lower impedance and flexibility whilst maintaining appropriate mechanical properties [1] .


Levetiracetam-Loaded Biodegradable Polymer Implants In The Tetanus Toxin Model Of Temporal Lobe Epilepsy In Rats, Amy J. Halliday, Toni E. Campbell, Timothy S. Nelson, Karen J. Mclean, Gordon G. Wallace, Mark J. Cook Jan 2013

Levetiracetam-Loaded Biodegradable Polymer Implants In The Tetanus Toxin Model Of Temporal Lobe Epilepsy In Rats, Amy J. Halliday, Toni E. Campbell, Timothy S. Nelson, Karen J. Mclean, Gordon G. Wallace, Mark J. Cook

Australian Institute for Innovative Materials - Papers

Approximately one-third of people with epilepsy receive insufficient benefit from currently available anticonvulsant medication, and some evidence suggests that this may be due to a lack of effective penetration into brain parenchyma. The current study investigated the ability of biodegradable polymer implants loaded with levetiracetam to ameliorate seizures following implantation above the motor cortex in the tetanus toxin model of temporal lobe epilepsy in rats. The implants led to significantly shorter seizures and a trend towards fewer seizures for up to 1 week. The results of this study indicate that drug-eluting polymer implants represent a promising evolving treatment option for …


Polypyrrole As Cathode Materials For Zn-Polymer Battery With Various Biocompatible Aqueous Electrolytes, Sha Li, Irin Sultana, Zaiping Guo, Caiyun Wang, G G. Wallace, Hua-Kun Liu Jan 2013

Polypyrrole As Cathode Materials For Zn-Polymer Battery With Various Biocompatible Aqueous Electrolytes, Sha Li, Irin Sultana, Zaiping Guo, Caiyun Wang, G G. Wallace, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Polypyrrole films doped with p-toluenesulfonic anions on stainless steel mesh substrates were prepared by the electropolymerization method. A Zn/aqueous solution/polymer battery system was thus established with the polymer film as the cathode and three different biocompatible aqueous electrolytes. The mechanism of the anode reaction can be explained as the dissolution of Zn. It was found, however, that the discharge performance, including the discharge plateaus and capacities, were significantly affected by the polymer reactions. To elucidate the reaction mechanisms of the conductive polymer, its electrochemical properties were systematically studied by several techniques, including cyclic voltammetry, electrochemical impedance spectroscopy, and monitoring mass …


Mechanical Properties Of Interpenetrating Polymer Network Hydrogels Based On Hybrid Ionically And Covalently Crosslinked Networks, Sina Naficy, Shota Kawakami, Sasha Sadeghovaad, Minato Wakisaka, Geoffrey M. Spinks Jan 2013

Mechanical Properties Of Interpenetrating Polymer Network Hydrogels Based On Hybrid Ionically And Covalently Crosslinked Networks, Sina Naficy, Shota Kawakami, Sasha Sadeghovaad, Minato Wakisaka, Geoffrey M. Spinks

Australian Institute for Innovative Materials - Papers

Hydrogels are polymer networks swollen in water. Because of their soft and wet nature, and their ability to show large volume changes, hydrogels can be useful in many biomedical and actuator applications. In these applications, it is crucial to tune the mechanical and physical properties of a hydrogel in a controllable manner. Here, interpenetrating polymer networks (IPNs) made of a covalently crosslinked network and an ionically crosslinked network were produced to investigate the effective parameters that control the physical and mechanical properties of an IPN hydrogel. Covalently crosslinked polyacrylamide (PAAm) or poly(acrylic acid) (PAA) networks were produced in the presence …


All-Polymer Battery System Based On Polypyrrole (Ppy)/Para (Toluene Sulfonic Acid) (Pts) And Polypyrrole (Ppy)/Indigo Carmine (Ic) Free Standing Films, Irin Sultana, Md. Mokhlesur Rahman, Jiazhao Wang, Caiyun Wang, Gordon G. Wallace, Hua-Kun Liu Jan 2012

All-Polymer Battery System Based On Polypyrrole (Ppy)/Para (Toluene Sulfonic Acid) (Pts) And Polypyrrole (Ppy)/Indigo Carmine (Ic) Free Standing Films, Irin Sultana, Md. Mokhlesur Rahman, Jiazhao Wang, Caiyun Wang, Gordon G. Wallace, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

In this study, we introduce a novel all-polymer battery system based on conducting polymer (polypyrrole, PPy) doped with dopants of para (toluene sulfonic acid) (pTS) and indigo carmine (IC), respectively. The performance of the systems consisting of polypyrrole-para (toluene sulfonic acid) (PPy-pTS) as cathode and polypyrrole-indigo carmine (PPy-IC) as anode in conjunction with either a polymer based electrolyte or a commercial organic electrolyte of 1M LiPF6 in a 50:50 (v/v) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) was evaluated. In the system, all the free-standing PPy-pTS and PPy-IC films were directly …


Microporous Gel Polymer Electrolytes For Lithium Rechargeable Battery Application, Nurul Hayati Idris, Md. Mokhlesur Rahman, Jia-Zhao Wang, Hua-Kun Liu Jan 2012

Microporous Gel Polymer Electrolytes For Lithium Rechargeable Battery Application, Nurul Hayati Idris, Md. Mokhlesur Rahman, Jia-Zhao Wang, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Microporous poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) membranes were prepared using the phase-separation method. Then, the membranes were immersed in liquid electrolyte to form polymer electrolytes. The effects of PMMA on the morphology, degree of crystallinity, porosity, and electrolyte uptake of the PVDF membrane were studied. The addition of PMMA increased the pore size, porosity and electrolyte uptake of the PVDF membrane, which in turn increased the ionic conductivity of the polymer electrolyte. The maximum ionic conductivity at room temperature was 1.21 × 10−3 S cm−1 for Sample E70. The polymer electrolyte was investigated, along with lithium iron phosphate (LiFePO4) as cathode …


Efficient Dye Sensitized Solar Cells Based On A 2-Thiophen-2-Yl-Vinyl-Conjugated Ruthenium Photosensitizer And A Conjugated Polymer Hole Conductor, Attila Mozer, Y Wada, K-J Jiang, N Masaki, S Yanagida, Shogo Mori Jan 2006

Efficient Dye Sensitized Solar Cells Based On A 2-Thiophen-2-Yl-Vinyl-Conjugated Ruthenium Photosensitizer And A Conjugated Polymer Hole Conductor, Attila Mozer, Y Wada, K-J Jiang, N Masaki, S Yanagida, Shogo Mori

Australian Institute for Innovative Materials - Papers

Efficient dye-sensitized TiO2 solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and a conjugated polymer poly(3,4-ethylenedioxythiophene) have been fabricated. A maximum power conversion efficiency of 2.6% is achieved when the mesoporous TiO2 layer is 5–6 μm. The high fill factor (0.74), the open circuit voltage (0.78V), and the linear light intensity dependence of the short circuit current density (4.5mA cm−2 at 100 mW cm−2) make these devices promising for solid state photovoltaic applications.


Asymmetry And Rectification In The Tunnel Current Of A Nanometer-Sized Metal-Conjugated Polymer-Metal Junction, S T. Yau, C Zhang, Peter Innis Jan 2000

Asymmetry And Rectification In The Tunnel Current Of A Nanometer-Sized Metal-Conjugated Polymer-Metal Junction, S T. Yau, C Zhang, Peter Innis

Australian Institute for Innovative Materials - Papers

Electron transport processes of a nanometer metal-conjugated polymer–metal tunnel junction have been probed using a scanning tunneling microscope. The tunnel current of the junction shows two effects. The appearance of an asymmetry in the tunnel current indicates that the junction transport mechanism is different from that for which tunneling occurs directly between two metallic electrodes. Thus, understanding of the asymmetry and hence the transport mechanism demands a detailed description of the metal–polymer interface. By applying the theories of the metal–semiconductor interface to the tunnel junction, we show the presence of an asymmetric electrostatic potential-energy profile, which, together with the metal-induced …