Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Australian Institute for Innovative Materials - Papers

High

Articles 1 - 30 of 59

Full-Text Articles in Engineering

(Bi0.51 Na0.47)Tio3 Based Lead Free Ceramics With High Energy Density And Efficiency, Yu Huang, Fei Li, Hua Hao, Fangquan Xia, Hanxing Liu, Shujun Zhang Jan 2019

(Bi0.51 Na0.47)Tio3 Based Lead Free Ceramics With High Energy Density And Efficiency, Yu Huang, Fei Li, Hua Hao, Fangquan Xia, Hanxing Liu, Shujun Zhang

Australian Institute for Innovative Materials - Papers

Dielectric ceramics with high energy storage density and energy efficiency play an important role in high power energy storage applications. In this work, lead free relaxor ferroelectric ceramics in (1-x)Bi 0.51 Na 0.47 TiO 3 - xBa(Zr 0.3 Ti 0.7 )O 3 (BNT-BZT100x: x = 0.20, 0.30, 0.40 and 0.50) system are fabricated by conventional solid-state sintering method. The BNT-BZT100x ceramics are sintered dense with minimal pores, exhibiting pseudocubic symmetry and strong relaxor characteristic. A high energy storage density of 3.1 J/cm 3 and high energy efficiency of 91% are simultaneously achieved in BNT-BZT40 ceramic with 0.1 mm in thickness, …


Ultrasonic Spray Deposition Of Tio2 Electron Transport Layers For Reproducible And High Efficiency Hybrid Perovskite Solar Cells, Jingsong Sun, Alexander Pascoe, Steffen Meyer, Qijie Wu, Enrico Della Gaspera, Sonia Raga, Tian Zhang, Andrew Nattestad, Udo Bach, Yi-Bing Cheng, Jacek Jasieniak Jan 2019

Ultrasonic Spray Deposition Of Tio2 Electron Transport Layers For Reproducible And High Efficiency Hybrid Perovskite Solar Cells, Jingsong Sun, Alexander Pascoe, Steffen Meyer, Qijie Wu, Enrico Della Gaspera, Sonia Raga, Tian Zhang, Andrew Nattestad, Udo Bach, Yi-Bing Cheng, Jacek Jasieniak

Australian Institute for Innovative Materials - Papers

The fabrication of high efficiency perovskite solar cells at larger scales will rely on the optimized deposition conditions of every layer using scalable methodologies. Most current perovskite devices that employ the archetypal TiO2 hole blocking layer utilise a simple air-brush approach. This approach is not scalable as it results in significant layer inhomogeneity across larger devices areas. To overcome this inherent limitation, in this work we use ultrasonic spray deposition as an alternative approach for the TiO2 deposition. Focusing on identical reaction chemistries as for air-brush, namely bis(isopropoxide)-bis(acetylacetonate) titanium (IV) based solutions, we find that under optimized conditions smooth TiO2 …


Flexible And Free-Standing Siox/Cnt Compositefilms For High Capacityand Durable Lithium Ion Batteries, Wenlei Guo, Xiao Yan, Feng Hou, Lei Wen, Yejing Dai, Deming Yang, Xiaotong Jiang, Jian Liu, Ji Liang, Shi Xue Dou Jan 2019

Flexible And Free-Standing Siox/Cnt Compositefilms For High Capacityand Durable Lithium Ion Batteries, Wenlei Guo, Xiao Yan, Feng Hou, Lei Wen, Yejing Dai, Deming Yang, Xiaotong Jiang, Jian Liu, Ji Liang, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Flexible and free-standing electrode materials are prerequisite and key components for next-generation flexible energy storage and conversion devices. However, it is still a chanllenge to fabricate these materials from a continuous, straightforward, and facile method. Herein, we report a flexible composite film with silicon oxides decorated on few-walled carbon nanotubes, which can be continuously fabricated and directly drawn from the hot zone of the reactor. The composite film can be readily used for electrochemical lithium ion storage with high and reversible specific capacity, good rate capability, and excellent cycling performance. These exceptional characteristics make it very promising for flexible energy …


Porous Nati2(Po4)(3) Nanocubes Anchored On Porous Carbon Nanosheets For High Performance Sodium-Ion Batteries, Ziqi Wang, Jiaojiao Liang, Kai Fan, Xiaodi Liu, Caiyun Wang, Jianmin Ma Jan 2018

Porous Nati2(Po4)(3) Nanocubes Anchored On Porous Carbon Nanosheets For High Performance Sodium-Ion Batteries, Ziqi Wang, Jiaojiao Liang, Kai Fan, Xiaodi Liu, Caiyun Wang, Jianmin Ma

Australian Institute for Innovative Materials - Papers

NaTi2(PO4)3 has attracted great interest as anode material for sodium ion batteries owing to its open three-dimensional framework structure and limited volume changes during the charge and discharge process. However, the poor intrinsic electronic conductivity of NaTi2(PO4)3 needs to be improved for high rate capability. In this work, porous NaTi2(PO4)3 nanocubes anchored on porous carbon nanosheets (NaTi2(PO4)3/C) are designed and developed. This material exhibits a large discharge capacity and good rate capacity including a first discharge capacity of 485 mAh g−1 at a current density of 0.1 A g−1, and 98 mAh g−1 retained at a high rate of 4 …


Ag-Mg Antisite Defect Induced High Thermoelectric Performance Of Α-Mgagsb, Zhenzhen Feng, Jihua Zhang, Yuli Yan, Guangbiao Zhang, Chao Wang, Chengxiao Peng, Fengzhu Ren, Yuan Xu Wang, Zhenxiang Cheng Jan 2017

Ag-Mg Antisite Defect Induced High Thermoelectric Performance Of Α-Mgagsb, Zhenzhen Feng, Jihua Zhang, Yuli Yan, Guangbiao Zhang, Chao Wang, Chengxiao Peng, Fengzhu Ren, Yuan Xu Wang, Zhenxiang Cheng

Australian Institute for Innovative Materials - Papers

Engineering atomic-scale native point defects has become an attractive strategy to improve the performance of thermoelectric materials. Here, we theoretically predict that Ag-Mg antisite defects as shallow acceptors can be more stable than other intrinsic defects under Mg-poor-Ag/Sb-rich conditions. Under more Mg-rich conditions, Ag vacancy dominates the intrinsic defects. The p-type conduction behavior of experimentally synthesized ¿-MgAgSb mainly comes from Ag vacancies and Ag antisites (Ag on Mg sites), which act as shallow acceptors. Ag-Mg antisite defects significantly increase the thermoelectric performance of ¿-MgAgSb by increasing the number of band valleys near the Fermi level. For Li-doped ¿-MgAgSb, under more …


Ultra-Light And Flexible Pencil-Trace Anode For High Performance Potassium-Ion And Lithium-Ion Batteries, Zhixin Tai, Yajie Liu, Qing Zhang, Tengfei Zhou, Zaiping Guo, Hua-Kun Liu, Shi Xue Dou Jan 2017

Ultra-Light And Flexible Pencil-Trace Anode For High Performance Potassium-Ion And Lithium-Ion Batteries, Zhixin Tai, Yajie Liu, Qing Zhang, Tengfei Zhou, Zaiping Guo, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8B pencil. Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries (KIBs), significantly better than in lithium-ion batteries (LIBs), with capacity retention of 66% for the KIB vs. 28% for the LIB …


Binder-Free And Carbon-Free 3d Porous Air Electrode For Li-O2 Batteries With High Efficiency, High Capacity, And Long Life, Wenbin Luo, Xuanwen Gao, Dongqi Shi, Shulei Chou, Jiazhao Wang, Hua-Kun Liu Jan 2016

Binder-Free And Carbon-Free 3d Porous Air Electrode For Li-O2 Batteries With High Efficiency, High Capacity, And Long Life, Wenbin Luo, Xuanwen Gao, Dongqi Shi, Shulei Chou, Jiazhao Wang, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Pt-Gd alloy polycrystalline thin film is deposited on 3D nickel foam by pulsed laser deposition method serving as a whole binder/carbon-free air electrode, showing great catalytic activity enhancement as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium oxygen batteries. The porous structure can facilitate rapid O2 and electrolyte diffusion, as well as forming a continuous conductive network throughout the whole energy conversion process. It shows a favorable cycle performance in the full discharge/charge model, owing to the high catalytic activity of the Pt-Gd alloy composite and 3D porous nickel foam structure. Specially, excellent cycling performance …


Expeditious And Eco-Friendly Hydrothermal Polymerization Of Pedot Nanoparticles For Binderfree High Performance Supercapacitor Electrodes, Murugesan Rajesh, C Justin Raj, Byung Chul Kim, Ramu Manikandan, Sung Jin Kim, Sang-Yeup Prof Sang-Yeup Park, Kwangsoo Lee, Kook Hyun Yu Jan 2016

Expeditious And Eco-Friendly Hydrothermal Polymerization Of Pedot Nanoparticles For Binderfree High Performance Supercapacitor Electrodes, Murugesan Rajesh, C Justin Raj, Byung Chul Kim, Ramu Manikandan, Sung Jin Kim, Sang-Yeup Prof Sang-Yeup Park, Kwangsoo Lee, Kook Hyun Yu

Australian Institute for Innovative Materials - Papers

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a promising conjugated polymer that has attracted attention because of its outstanding electronic properties, useful for a wide range of applications in energy storage devices. However, synthesis of high-quality PEDOT occurs via vapour phase polymerization and chemical vapour deposition techniques using extrinsic hard templates or complicated experimental setups. This study introduces a simple hydrothermal polymerization technique using ferric chloride (FeCl3) as an oxidizing agent to overcome the above drawback, which results in good conductive, crystalline PEDOT nanodendrites and nanospheres. The effects of varying the molar ratio of FeCl3 oxidant were investigated in terms of the structural, morphological …


A High Energy Density Solar Rechargeable Redox Battery, Mohammad Ali Mahmoudzadeh, Ashwin R. Usgaocar, Joseph Giorgio, David L. Officer, Gordon G. Wallace, John D. W Madden Jan 2016

A High Energy Density Solar Rechargeable Redox Battery, Mohammad Ali Mahmoudzadeh, Ashwin R. Usgaocar, Joseph Giorgio, David L. Officer, Gordon G. Wallace, John D. W Madden

Australian Institute for Innovative Materials - Papers

An integrated solar energy conversion and storage system is presented using a dye sensitized electrode in a redox battery structure. A stable discharge voltage is shown with high areal energy storage capacity of 180 W h cm-2 by choosing iodide/polysulfide as the pair of active materials matched with permeable porous electrodes. The solar rechargeable battery system offers a higher round-trip efficiency and potential cost savings on fabrication compared to individual devices.


A High-Performance Rechargeable Mg2+/Li+ Hybrid Battery Using One-Dimensional Mesoporous Tio2(B) Nanoflakes As The Cathode, Shuojian Su, Yanna Nuli, Zhenguo Huang, Qi Miao, Jun Yang, Jiulin Wang Jan 2016

A High-Performance Rechargeable Mg2+/Li+ Hybrid Battery Using One-Dimensional Mesoporous Tio2(B) Nanoflakes As The Cathode, Shuojian Su, Yanna Nuli, Zhenguo Huang, Qi Miao, Jun Yang, Jiulin Wang

Australian Institute for Innovative Materials - Papers

Mg2+/Li+ hybrid batteries have recently been constructed combining a Mg anode, a Li+-intercalation electrode, and an electrolyte containing both Mg2+ and Li+. These batteries have been reported to outperform all the previously reported magnesium batteries in terms of specific capacity, cycling stability, and rate capability. Herein, we report the outstanding electrochemical performance of Mg2+/Li+ hybrid batteries consisting of a one-dimensional mesoporous TiO2(B) cathode, a Mg anode, and an electrolyte consisting of 0.5 mol L-1 Mg(BH4)2 + 1.5 mol L-1 LiBH4 in tetraglyme. A highly synergetic interaction between Li+ and Mg2+ ions toward the pseudo-capacitive reaction is proposed. The hybrid batteries …


A Methodical Approach For Fabrication Of Binder-Free Li2s-C Composite Cathode With High Loading Of Active Material For Li-S Battery, Mohammad Kaiser, Xin Liang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Jan 2016

A Methodical Approach For Fabrication Of Binder-Free Li2s-C Composite Cathode With High Loading Of Active Material For Li-S Battery, Mohammad Kaiser, Xin Liang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Lithium sulfide (Li2S), which has a theoretical capacity of 1166 mA h/g, is considered as a promising cathode material for the Li-S battery. The electrochemical performance of microsized Li2S is impaired, however, by its low electrical conductivity as well as first cycle high activation potential problem. In this work, microsized Li2S powder had been ball-milled with different carbon sources to synthesize Li2S-C composites as well as to find the suitable carbon sources, which were then capillary-deposited in three-dimensional multi-layered Ni foam from a dioxolane-containing mixture to fabricate a binder-free Li2S-C composite cathode. A large amount of active material (∼5 mg/cm2) …


A Facile Approach To Synthesize Stable Cnts@Mno Electrocatalyst For High Energy Lithium Oxygen Batteries, Wenbin Luo, Shulei Chou, Jiazhao Wang, Yu-Chun Zhai, Hua-Kun Liu Jan 2015

A Facile Approach To Synthesize Stable Cnts@Mno Electrocatalyst For High Energy Lithium Oxygen Batteries, Wenbin Luo, Shulei Chou, Jiazhao Wang, Yu-Chun Zhai, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

A composite of manganese monoxide loaded onto carbon nanotubes (CNTs@MnO) has been synthesized by a facile approach, in which the CNTs form a continuous conductive network connecting the electrocatalyst MnO nanoparticles together to facilitate good electrochemical performance. The electrocatalyst MnO shows favourable rechargeability, and good phase and morphology stability in lithium oxygen batteries. Excellent cycling performance is also demonstrated, in which the terminal voltage is higher than 2.4 V after 100 cycles at 0.4 mA cm-2, with 1000 mAh g-1 (composite) capacity. Therefore, this hybrid material is promising for use as a cathode material for lithium oxygen …


Guanidinium Octahydrotriborate: An Ionic Liquid With High Hydrogen Storage Capacity, Weidong Chen, Zhenguo Huang, Guotao Wu, Teng He, Zhao Li, Juner Chen, Zaiping Guo, Hua-Kun Liu, Ping Chen Jan 2015

Guanidinium Octahydrotriborate: An Ionic Liquid With High Hydrogen Storage Capacity, Weidong Chen, Zhenguo Huang, Guotao Wu, Teng He, Zhao Li, Juner Chen, Zaiping Guo, Hua-Kun Liu, Ping Chen

Australian Institute for Innovative Materials - Papers

For chemical hydrogen storage, capacity is one key criterion that has spurred intense efforts to investigate compounds with high hydrogen content. The guanidinium cation and the octahydrotriborate anion possess 6 H+ and 8 H-, respectively. The combination of these two ions yields guanidinium octahydrotriborate with 13.8 wt% hydrogen. This paper presents its facile synthesis, as confirmed by 11B and 1H nuclear magnetic resonance spectroscopy. The results show that guanidinium octahydrotriborate is an ionic liquid with a melting point below -10°C, which makes it a possible injectable/pumpable hydrogen carrier. It decomposes selectively to hydrogen, in stark …


Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei Jan 2015

Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei

Australian Institute for Innovative Materials - Papers

Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically …


High Acetic Acid Production Rate Obtained By Microbial Electrosynthesis From Carbon Dioxide, Ludovic Jourdin, Timothy Grieger, Juliette Monetti, Victoria Flexer, Stefano Freguia, Yang Lu, Jun Chen, Mark S. Romano, Gordon G. Wallace, Jurg Keller Jan 2015

High Acetic Acid Production Rate Obtained By Microbial Electrosynthesis From Carbon Dioxide, Ludovic Jourdin, Timothy Grieger, Juliette Monetti, Victoria Flexer, Stefano Freguia, Yang Lu, Jun Chen, Mark S. Romano, Gordon G. Wallace, Jurg Keller

Australian Institute for Innovative Materials - Papers

High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m-2 and an acetic acid production rate of 685 ± 30 (g m-2 day-1) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final …


3d Fe2(Moo4)3 Microspheres With Nanosheet Constituents As High-Capacity Anode Materials For Lithium-Ion Batteries, Hao Zheng, Shiqiang Wang, Jiazhao Wang, Jun Wang, Lin Li, Yun Yang, Chuanqi Feng, Ziqi Sun Jan 2015

3d Fe2(Moo4)3 Microspheres With Nanosheet Constituents As High-Capacity Anode Materials For Lithium-Ion Batteries, Hao Zheng, Shiqiang Wang, Jiazhao Wang, Jun Wang, Lin Li, Yun Yang, Chuanqi Feng, Ziqi Sun

Australian Institute for Innovative Materials - Papers

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible …


High-Performance Flexible All-Solid-State Supercapacitor From Large Free-Standing Graphene-Pedot/Pss Films, Yuqing Liu, Bo Weng, Joselito M. Razal, Qun Xu, Chen Zhao, Yuyang Hou, Shayan Seyedin, Rouhollah Jalili, Gordon G. Wallace, Jun Chen Jan 2015

High-Performance Flexible All-Solid-State Supercapacitor From Large Free-Standing Graphene-Pedot/Pss Films, Yuqing Liu, Bo Weng, Joselito M. Razal, Qun Xu, Chen Zhao, Yuyang Hou, Shayan Seyedin, Rouhollah Jalili, Gordon G. Wallace, Jun Chen

Australian Institute for Innovative Materials - Papers

Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm-2 was achieved at a scan rate of 10 mV s-1 using the composite electrode with a high mass loading (8.49 mg …


A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo Jan 2015

A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel strategy to improve the electrochemical performance of a germanium anode is proposed via encapsulating germanium nanoparticles in carbon nanoboxes by carbon coating the precursor, germanium dioxide cubes, and then subjecting them to a reduction treatment. The complete and robust carbon boxes are shown to not only provide extra void space for the expansion of germanium nanoparticles after lithium insertion but also offer a large reactive area and reduced distance for the lithium diffusion. Furthermore, the thus-obtained composite, composed of densely stacked carbon nanoboxes encapsulating germanium nanoparticles (germanium at carbon cubes (Ge at CC)), exhibits a high tap density …


Two-Dimensional Nico2o4 Nanosheet-Coated Three-Dimensional Graphene Networks For High-Rate, Long-Cycle-Life Supercapacitors, Jiang Zhou, Ying Huang, Xiehong Cao, Bo Ouyang, Wenping Sun, Chaoliang Tan, Yu Zhang, Qinglang Ma, Shuquan Liang, Qingyu Yan, Hua Zhang Jan 2015

Two-Dimensional Nico2o4 Nanosheet-Coated Three-Dimensional Graphene Networks For High-Rate, Long-Cycle-Life Supercapacitors, Jiang Zhou, Ying Huang, Xiehong Cao, Bo Ouyang, Wenping Sun, Chaoliang Tan, Yu Zhang, Qinglang Ma, Shuquan Liang, Qingyu Yan, Hua Zhang

Australian Institute for Innovative Materials - Papers

We report the synthesis of two-dimensional (2D) NiCo2O4 nanosheet-coated three-dimensional graphene network (3DGN), which is then used as an electrode for high-rate, long-cycle-life supercapacitors. Using the 3DGN and nanoporous nanosheets, an ultrahigh specific capacitance (2173 F g-1 at 6 A g-1), excellent rate capability (954 F g-1 at 200 A g-1) and superior long-term cycling performance (94% capacitance retention after 14000 cycles at 100 A g-1) are achieved.


Surface Engineering And Design Strategy For Surface-Amorphized Tio 2 @Graphene Hybrids For High Power Li-Ion Battery Electrodes, Tengfei Zhou, Yang Zheng, Hong Gao, Shudi Min, Sean Li, Hua-Kun Liu, Zaiping Guo Jan 2015

Surface Engineering And Design Strategy For Surface-Amorphized Tio 2 @Graphene Hybrids For High Power Li-Ion Battery Electrodes, Tengfei Zhou, Yang Zheng, Hong Gao, Shudi Min, Sean Li, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Electrode materials with battery-like high capacity and capacitorlike rate performance are highly desirable, since they would signifi cantly advance next-generation energy storage technology. [ 1 ] TiO 2 has received increasing attention as an anode material for lithium-ion batteries (LIBs) due to its good reversible capacity and low volume expansion upon lithiation, as well as its low cost and safe lithiation potential. [ 2 ] The low lithium-ion mobility within the crystalline phase TiO 2 , however, together with its poor electrical conductivity, means that only a thin surface layer of the host material is available for Li intercalation at …


3d Hierarchical Porous Graphene Aerogel With Tunable Meso-Pores On Graphene Nanosheets For High-Performance Energy Storage, Long Ren, K N. Hui, K S. Hui, Yundan Liu, Xiang Qi, Jianxin Zhong, Yi Du, Jianping Yang Jan 2015

3d Hierarchical Porous Graphene Aerogel With Tunable Meso-Pores On Graphene Nanosheets For High-Performance Energy Storage, Long Ren, K N. Hui, K S. Hui, Yundan Liu, Xiang Qi, Jianxin Zhong, Yi Du, Jianping Yang

Australian Institute for Innovative Materials - Papers

New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable mesopores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a …


Mesoporous Hexagonal Co3o4 For High Performance Lithium Ion Batteries, Dawei Su, Xiuqiang Xie, Paul Munroe, S X. Dou, Guoxiu Wang Jan 2014

Mesoporous Hexagonal Co3o4 For High Performance Lithium Ion Batteries, Dawei Su, Xiuqiang Xie, Paul Munroe, S X. Dou, Guoxiu Wang

Australian Institute for Innovative Materials - Papers

Mesoporous Co3O4 nanoplates were successfully prepared by the conversion of hexagonal beta-Co(OH)(2) nanoplates. TEM, HRTEM and N-2 sorption analysis confirmed the facet crystal structure and inner mesoporous architecture. When applied as anode materials for lithium storage in lithium ion batteries, mesoporous Co3O4 nanocrystals delivered a high specific capacity. At 10 degrees C current rate, as-prepared mesoporous Co3O4 nanoplates delivered a specific capacity of 1203 mAh/g at first cycle and after 200 cycles it can still maintain a satisfied value (330 mAh/g). Fromex-situ TEM, SAED and FESEM observation, it was found that mesoporous Co3O4 nanoplates were reduced to Li2O and Co …


Sulfur-Graphene Nanostructured Cathodes Via Ball-Milling For High-Performance Lithium-Sulfur Batteries, Jiantie Xu, Jianglan Shui, Jianli Wang, Min Wang, Hua-Kun Liu, S X. Dou, In-Yup Jeon, Jeong-Min Seo, Jong-Beom Baek, Liming Dai Jan 2014

Sulfur-Graphene Nanostructured Cathodes Via Ball-Milling For High-Performance Lithium-Sulfur Batteries, Jiantie Xu, Jianglan Shui, Jianli Wang, Min Wang, Hua-Kun Liu, S X. Dou, In-Yup Jeon, Jeong-Min Seo, Jong-Beom Baek, Liming Dai

Australian Institute for Innovative Materials - Papers

Although much progress has been made to develop high-performance lithium-sulfur batteries (LSBs), the reported physical or chemical routes to sulfur cathode materials are often multistep/complex and even involve environmentally hazardous reagents, and hence are infeasible for mass production. Here, we report a simple ball-milling technique to combine both the physical and chemical routes into a one-step process for low-cost, scalable, and eco-friendly production of graphene nanoplatelets (GnPs) edge-functionalized with sulfur (S-GnPs) as highly efficient LSB cathode materials of practical significance. LSBs based on the S-GnP cathode materials, produced by ball-milling 70 wt % sulfur and 30 wt % graphite, delivered …


Na3v2(Po4)3 Particles Partly Embedded In Carbon Nanofibers With Superb Kinetics For Ultra-High Power Sodium Ion Batteries, Junghoon Yang, Dongwook Han, Mi Ru Jo, Kyeongse Song, Yongil Kim, Shulei Chou, Hua-Kun Liu, Yong-Mook Kang Jan 2014

Na3v2(Po4)3 Particles Partly Embedded In Carbon Nanofibers With Superb Kinetics For Ultra-High Power Sodium Ion Batteries, Junghoon Yang, Dongwook Han, Mi Ru Jo, Kyeongse Song, Yongil Kim, Shulei Chou, Hua-Kun Liu, Yong-Mook Kang

Australian Institute for Innovative Materials - Papers

We here describe the extraordinary performance of NASICON Na3V2(PO4)3-carbon nanofiber (NVP-CNF) composites with ultra-high power and excellent cycling performance. NVP-CNFs are composed of CNFs at the center part and partly embedded NVP nanoparticles in the shell. We first report this unique morphology of NVP-CNFs for the electrode material of secondary batteries as well as for general energy conversion materials. Our NVP-CNFs show not only a high discharge capacity of approx. 88.9 mA h g-1 even at a high current density of 50 C but also approx. 93% cyclic retention property after …


Novel Germanium/Polypyrrole Composite For High Power Lithium-Ion Batteries, Xuanwen Gao, Wenbin Luo, Chao Zhong, David Wexler, Shulei Chou, Hua-Kun Liu, Zhicong Shi, Guohua Chen, Kiyoshi Ozawa, Jiazhao Wang Jan 2014

Novel Germanium/Polypyrrole Composite For High Power Lithium-Ion Batteries, Xuanwen Gao, Wenbin Luo, Chao Zhong, David Wexler, Shulei Chou, Hua-Kun Liu, Zhicong Shi, Guohua Chen, Kiyoshi Ozawa, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Nano-Germanium/polypyrrole composite has been synthesized by chemical reduction method in aqueous solution. The Ge nanoparticles were directly coated on the surface of the polypyrrole. The morphology and structural properties of samples were determined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis was carried out to determine the polypyrrole content. The electrochemical properties of the samples have been investigated and their suitability as anode materials for the lithium-ion battery was examined. The discharge capacity of the Ge nanoparticles calculated in the Ge-polypyrrole composite is 1014 mAh g-1 after 50 cycles at 0.2 C rate, which is …


Large Scale Production Of Novel G-C3n4 Micro Strings With High Surface Area And Versatile Photodegradation Ability, Muhammad Nawaz Tahir, Chuanbao Cao, Faheem K. Butt, Sajid Butt, Faryal Idrees, Zulfiqar Ali, Imran Aslam, M Tanveer, Asif Mahmood, Nasir Mahmood Jan 2014

Large Scale Production Of Novel G-C3n4 Micro Strings With High Surface Area And Versatile Photodegradation Ability, Muhammad Nawaz Tahir, Chuanbao Cao, Faheem K. Butt, Sajid Butt, Faryal Idrees, Zulfiqar Ali, Imran Aslam, M Tanveer, Asif Mahmood, Nasir Mahmood

Australian Institute for Innovative Materials - Papers

An easy, scalable and environmentally benign chemical method has been developed to synthesize micro strings of graphitic-C3N4 (msg-C3N4) through pre-treatment of melamine with HNO 3 in alkaline solvent at low temperature. This methodology results in a unique string type morphology of msg-C3N4 with higher surface area. These msg-C3N4 micro strings were used as a photocatalyst under visible light for photodegradation of rhodamine B, methyl blue and methyl orange. The msg-C3N4 shows enhanced photodegradation efficiency due to its high surface area and favourable bandgap. The first order rate constant for msg-C3N4 was measured which confirms the higher performance of msg-C3N4 in …


Microemulsion-Assisted Synthesis Of Nanosized Li-Mn-O Spinel Cathodes For High-Rate Lithium-Ion Batteries, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim, Maria Skyllas-Kazacos Jan 2014

Microemulsion-Assisted Synthesis Of Nanosized Li-Mn-O Spinel Cathodes For High-Rate Lithium-Ion Batteries, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim, Maria Skyllas-Kazacos

Australian Institute for Innovative Materials - Papers

Li1.16Mn1.84O4 nanoparticles (50-90 nm) with cubic spinel structure are synthesized by combining a microemulsion process to produce ultrafine Mn(OH)2 nanocrystals (3-8 nm) with a solid-state lithiation step. The nanostructured lithium-rich Li1.16Mn1.84O4 shows stable cycling performance and superior rate capabilities as compared with the corresponding bulk material, for example, the nano-sized Li1.16Mn1.84O4 electrode shows stable reversible capacities of 74 mAhg-1 during the 1000th cycle at a high rate of 40 C between 3.0 and 4.5 V. In addition, Li1.16Mn1.84O4 nanoparticles also show high Li storage properties over an enlarged voltage window of 2.0-4.5 V with high capacities and stable cyclability, for …


Achieving Single Domain Relaxor-Pt Crystals By High Temperature Poling, Fei Li, Linghang Wang, Li Jin, Zhuo Xu, Shujun Zhang Jan 2014

Achieving Single Domain Relaxor-Pt Crystals By High Temperature Poling, Fei Li, Linghang Wang, Li Jin, Zhuo Xu, Shujun Zhang

Australian Institute for Innovative Materials - Papers

Single domain relaxor-PT crystals are important from both fundamental and application viewpoints. Compared to domain engineered relaxor-PT crystals, however, single domain crystals are prone to cracking during poling. In this paper, based on the analysis of the cracking phenomenon in [001] poled tetragonal 0.25Pb(In0.5Nb0.5)O3-0.37Pb(Mg 1/3Nb2/3)O3-0.38PbTiO3 (PIN-PMN-PT) crystals, the non-180°ferroelastic domain switching was thought to be the dominant factor for cracking during the poling process. A high temperature poling technique, by which the domain switching can be greatly avoided, was proposed to achieve the single domain relaxor-PT crystals. By this poling approach, a quasi-single domain crystal was obtained without cracks. In …


Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou Jan 2014

Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

A high performance Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by the microwave-assisted hydrothermal method followed by a post annealing process. The synchrotron X-ray diffraction analysis results confirmed that single-phase Li3V2(PO4)3 with monoclinic structure was obtained. Scanning electron microscope and transmission electron microscope images revealed that the as-prepared Li3V 2(PO4)3 was composed of nanowires and microsized particles. Electrochemical results demonstrated that the Li 3V2(PO4)3 electrode measured at 10 C after 500 cycles can deliver discharge capacities of 85.4 mAh g-1 and 103.4 mAh g-1, with a capacity retention of 99.3% and 95.9%, in the voltage ranges of 3.0-4.3 …


Ultra-High Performance, High-Temperature Superconducting Wires Via Cost-Effective, Scalable, Co-Evaporation Process, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jung Ho Kim, S X. Dou, Yoon-Uk Heo, Sung-Hun Wee, Amit Goyal Jan 2014

Ultra-High Performance, High-Temperature Superconducting Wires Via Cost-Effective, Scalable, Co-Evaporation Process, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jung Ho Kim, S X. Dou, Yoon-Uk Heo, Sung-Hun Wee, Amit Goyal

Australian Institute for Innovative Materials - Papers

Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. …