Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Australian Institute for Innovative Materials - Papers

2015

Synthesis

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Controllable Synthesis Of Concave Cubic Gold Core-Shell Nanoparticles For Plasmon-Enhanced Photon Harvesting, Yang Bai, Teera Butburee, Hua Yu, Zhen Li, Rose Amal, Gao Qing (Max) Lu, Lianzhou Wang Jan 2015

Controllable Synthesis Of Concave Cubic Gold Core-Shell Nanoparticles For Plasmon-Enhanced Photon Harvesting, Yang Bai, Teera Butburee, Hua Yu, Zhen Li, Rose Amal, Gao Qing (Max) Lu, Lianzhou Wang

Australian Institute for Innovative Materials - Papers

Well-defined core-shell nanoparticles (NPs) containing concave cubic Au cores and TiO2 shells (CA@T) were synthesized in colloidal suspension. These CA@T NPs exhibit Localized Surface Plasmon Resonance (LSPR) absorption in the NIR region, which provides a unique property for utilizing the low energy range of the solar spectrum. In order to evaluate the plasmonic enhancement effect, a variety of CA@T NPs were incorporated into working electrodes of dye-sensitized solar cells (DSSCs). By adjusting the shell thickness of CA@T NPs, the plasmonic property can be tuned to achieve maximum photovoltaic improvement. Furthermore, the DSSC cells fabricated with the CA@T NPs exhibit …


Electrochemical Synthesis Of Mesoporous Pt Nanowires With Highly Electrocatalytic Activity Toward Methanol Oxidation Reaction, Cuiling Liu, Victor Malgras, Saad Alshehri, Jung Ho Kim, Yusuke Yamauchi Jan 2015

Electrochemical Synthesis Of Mesoporous Pt Nanowires With Highly Electrocatalytic Activity Toward Methanol Oxidation Reaction, Cuiling Liu, Victor Malgras, Saad Alshehri, Jung Ho Kim, Yusuke Yamauchi

Australian Institute for Innovative Materials - Papers

Self-supported one-dimensional (1D) mesoporous Pt nanowires (NWs) are prepared by confining micelle assembly in channels of a polycarbonate (PC) membrane. The obtained mesoporous Pt NWs show very high electrochemical activity and excellent durability as catalysts for methanol oxidation reaction (MOR) in comparison with the commercially available Pt black (PtB) catalyst. This work demonstrates that an appropriate combination of both self-supported 1D shape and mesoporous architecture indeed improve the electrocatalytic performances which is critical for further implementation and practical applications.


Robust Scalable Synthesis Of Surfactant-Free Thermoelectric Metal Chalcogenide Nanostructures, Chao Han, Zhen Li, Gao Qing (Max) Lu, S X. Dou Jan 2015

Robust Scalable Synthesis Of Surfactant-Free Thermoelectric Metal Chalcogenide Nanostructures, Chao Han, Zhen Li, Gao Qing (Max) Lu, S X. Dou

Australian Institute for Innovative Materials - Papers

A robust low-cost ambient aqueous method for the scalable synthesis of surfactant-free nanostructured metal chalcogenides (MaXb, M=Cu, Ag, Sn, Pb, and Bi; X=S, Se, and Te; a=1 or 2; and b=1 or 3) is developed in this work. The effects of reaction parameters, such as precursor concentration, ratio of precursors, and amount of reducing agent, on the composition, size, and shape of the resultant nanostructures have been comprehensively investigated. This environmentally friendly approach is capable of producing metal chalcogenide nanostructures in a one-pot reaction on a large scale, which were investigated for their thermoelectric properties towards conversion of waste heat …


Synthesis Of Different Cuo Nanostructures By A New Catalytic Template Method As Anode Materials For Lithium-Ion Batteries, Xiaohang Ma, Shuang Zeng, Bangkun Zou, Xin Liang, Jia-Ying Liao, Chunhua Chen Jan 2015

Synthesis Of Different Cuo Nanostructures By A New Catalytic Template Method As Anode Materials For Lithium-Ion Batteries, Xiaohang Ma, Shuang Zeng, Bangkun Zou, Xin Liang, Jia-Ying Liao, Chunhua Chen

Australian Institute for Innovative Materials - Papers

CuO powders composed of different rod-like clusters or dandelion-like nanospheres are prepared by a low-temperature thermal decomposition process of Cu(OH)2 precursors, which are obtained via a catalytic template method. A tentative mechanism is proposed to explain the formation and transformation of different Cu(OH)2 nanostructures. X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, field-emission scanning electron microscopy, transmission electron microscopy, infrared spectra analysis, Brunauer-Emmett-Teller measurements, and galvanostatic cell cycling are employed to characterize the structures and electrochemical performance of these CuO samples. The results show that these CuO samples obtained after 500 °C calcination have a stable cycling performance with a reversible …


A Comparison Of Chemical And Electrochemical Synthesis Of Pedot: Dextran Sulphate For Bio-Application, Leo Stevens, David G. Harman, Kerry J. Gilmore, Marc In Het Panhuis, Gordon G. Wallace Jan 2015

A Comparison Of Chemical And Electrochemical Synthesis Of Pedot: Dextran Sulphate For Bio-Application, Leo Stevens, David G. Harman, Kerry J. Gilmore, Marc In Het Panhuis, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Poly(3,4-ethylenedioxythiophene) (PEDOT) is an organic conducting polymer that has been the focus of significant research over the last decade, in both energy and biological applications. Most commonly, PEDOT is doped by the artificial polymer polystyrene sulfonate due to the excellent electrical characteristics yielded by this pairing. The biopolymer dextran sulphate (DS) has been recently reported as a promising alternative to PEDOT: PSS for biological application, having electrical properties rivaling PEDOT: PSS, complimented by the potential bioactivity of the polysaccharide. In this work we compared chemical and electrochemical polymerisations of PEDOT: DS in terms of their impact on the electrical, morphological …


Synthesis Of Nitrogen-Doped Graphene Via Thermal Treatment Of Graphene Oxide Within Methylimidazole And Its Capacitance Performance As Electric Double Layer Capacitor, Md. Monirul Islam, Shaikh Nayeem Faisal, Anup Kumar Roy, Sonia Ansari, Dean Cardillo, Konstantin K. Konstantinov, Enamul Haque Jan 2015

Synthesis Of Nitrogen-Doped Graphene Via Thermal Treatment Of Graphene Oxide Within Methylimidazole And Its Capacitance Performance As Electric Double Layer Capacitor, Md. Monirul Islam, Shaikh Nayeem Faisal, Anup Kumar Roy, Sonia Ansari, Dean Cardillo, Konstantin K. Konstantinov, Enamul Haque

Australian Institute for Innovative Materials - Papers

Nitrogen-doped graphene was successfully synthesised from graphene oxide (GO) and 2-methylimidazole composite via thermal treatment under argon flow at 700oC within 1h. This synthesised N-doped graphene exhibits homogeneous nitrogen doping with concentration of ~5% in three different nitrogen configuration namelypyridinic N, pyrrolic N and graphitic N. The electric double layer capacitor (EDLC) made up with this N-doped graphene showed excellent specific capacitance 274 F/g at current density of 1A/g, which was ~7 times higher than GO. This EDLC capacitor showed excellent cyclic stability up to 5000 cycles with capacity retention of ~91%.


Synthesis Of Large And Few Atomic Layers Of Hexagonal Boron Nitride On Melted Copper, Majharu Haque Khan, Zhenguo Huang, Feng Xiao, Gilberto Casillas, Zhixin Chen, Paul Molino, Hua-Kun Liu Jan 2015

Synthesis Of Large And Few Atomic Layers Of Hexagonal Boron Nitride On Melted Copper, Majharu Haque Khan, Zhenguo Huang, Feng Xiao, Gilberto Casillas, Zhixin Chen, Paul Molino, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1-10) yielded by …


One-Pot Synthesis Of Ultra-Small Magnetite Nanoparticles On The Surface Of Reduced Graphene Oxide Nanosheets As Anodes For Sodium-Ion Batteries, Shaohua Zhang, Weijie Li, Bien Tan, Shulei Chou, Zhen Li, S X. Dou Jan 2015

One-Pot Synthesis Of Ultra-Small Magnetite Nanoparticles On The Surface Of Reduced Graphene Oxide Nanosheets As Anodes For Sodium-Ion Batteries, Shaohua Zhang, Weijie Li, Bien Tan, Shulei Chou, Zhen Li, S X. Dou

Australian Institute for Innovative Materials - Papers

Nanocomposites with ultra-small magnetite (Fe3O4) nanoparticles (approx. 3 nm) uniformly anchored on the surfaces of reduced graphene oxide (RGO) nanosheets were successfully synthesized for anodes in sodium-ion batteries by a novel single-step high-temperature coprecipitation approach. The best electrode delivers a reversible Na+ storage capacity of 204 mA h g-1 with excellent capacity retention, i.e., 98% of the second-cycle value was retained after 200 cycles.


Research Progress On Design Strategies, Synthesis And Performance Of Limn2o4-Based Cathodes, Fangxin Mao, Wei Dong Guo, Jianmin Ma Jan 2015

Research Progress On Design Strategies, Synthesis And Performance Of Limn2o4-Based Cathodes, Fangxin Mao, Wei Dong Guo, Jianmin Ma

Australian Institute for Innovative Materials - Papers

Spinel LiMn2O4 (LMO)-based composites, due to their combination of low toxicity, abundant natural resources, and excellent electrochemical performance, are regarded as promising candidate cathode materials for lithium ion batteries. Current energy storage demands are not being met with existing materials, however, because of their defects, such as fast capacity fading, low rate capability, and low specific capacity in practical applications. Manganese dissolution during electrochemical processes bears the major responsibility for capacity loss, apart from the electrolyte factor. Low electrical conductivity, low ionic diffusion efficiency, and large structural variation have adverse effects on the electrochemical performance of materials. With respect to …


Large-Scale Synthesis Of Ordered Mesoporous Carbon Fiber And Its Application As Cathode Material For Lithium-Sulfur Batteries, Hongqiang Wang, Chaofeng Zhang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo Jan 2015

Large-Scale Synthesis Of Ordered Mesoporous Carbon Fiber And Its Application As Cathode Material For Lithium-Sulfur Batteries, Hongqiang Wang, Chaofeng Zhang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel type of one-dimensional ordered mesoporous carbon fiber has been prepared via the electrospinning technique by using resol as the carbon source and triblock copolymer Pluronic F127 as the template. Sulfur is then encapsulated in this ordered mesoporous carbon fibers by a simple thermal treatment. The interwoven fibrous nanostructure has favorably mechanical stability and can provide an effective conductive network for sulfur and polysulfides during cycling. The ordered mesopores can also restrain the diffusion of long-chain polysulfides. The resulting ordered mesoporous carbon fiber sulfur (OMCF-S) composite with 63% S exhibits high reversible capacity, good capacity retention and enhanced rate …