Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Australian Institute for Innovative Materials - Papers

2014

Adsorption

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Computational Study Of Carbon Dioxide Adsorption On Solid Boron, Qiao Sun, Meng Wang, Zhen Li, Aijun Du, Debra J. Searles Jan 2014

A Computational Study Of Carbon Dioxide Adsorption On Solid Boron, Qiao Sun, Meng Wang, Zhen Li, Aijun Du, Debra J. Searles

Australian Institute for Innovative Materials - Papers

Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B 28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results …


Effects Of Oxygen Adsorption On The Surface State Of Epitaxial Silicene On Ag(111), Xun Xu, Jincheng Zhuang, Yi Du, Haifeng Feng, N Zhang, Chen Liu, Tao Lei, Jiaou Wang, M Spencer, Tetsuya Morishita, Xiaolin Wang, S X. Dou Jan 2014

Effects Of Oxygen Adsorption On The Surface State Of Epitaxial Silicene On Ag(111), Xun Xu, Jincheng Zhuang, Yi Du, Haifeng Feng, N Zhang, Chen Liu, Tao Lei, Jiaou Wang, M Spencer, Tetsuya Morishita, Xiaolin Wang, S X. Dou

Australian Institute for Innovative Materials - Papers

Epitaxial silicene, which is one single layer of silicon atoms packed in a honeycomb structure, demonstrates a strong interaction with the substrate that dramatically affects its electronic structure. The role of electronic coupling in the chemical reactivity between the silicene and the substrate is still unclear so far, which is of great importance for functionalization of silicene layers. Here, we report the reconstructions and hybridized electronic structures of epitaxial 4 3 4 silicene on Ag(111), which are revealed by scanning tunneling microscopy and angle-resolved photoemission spectroscopy. The hybridization between Si and Ag results in a metallic surface state, which can …