Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw Dec 2022

Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw

All Theses

Graphene-reinforced polymer nanocomposites possess excellent mechanical, thermal, and electrical properties, which make them promising candidates for various applications. Favorable interfacial interactions and mechanics between graphene sheets and polymer matrices are often essential to achieve superior mechanical properties. Nevertheless, it remains largely elusive how molecular features of polymer systems, particularly the side-group size of polymer chains, affect the interfacial mechanics between graphene sheets and polymer matrices, primarily due to challenges in well controlling these features in experiments. On the other hand, exploring their roles in the mechanical properties of graphene-polymer nanocomposites is very expensive to study with all-atomistic molecular dynamics (MD) …


Effects Of Surface Noise On Printing Artifacts: An Artistic Approach To Hiding Print Artifacts, Samuel New Dec 2022

Effects Of Surface Noise On Printing Artifacts: An Artistic Approach To Hiding Print Artifacts, Samuel New

All Theses

This research focuses on improving the quality of Fused Filament Fabrication (FFF) 3D printing by using fractal noise to mask certain print artifacts (e.g. layer lines and stair-stepping). The use of textures is quite common in digital sculpting for aesthetic reasons. This study focuses on finding specific textures that minimize visible 3D print artifacts.


Iron Phosphate Glass For The Immobilization Of Dehalogenated Salt Waste, Matthew Aaron Page Dec 2022

Iron Phosphate Glass For The Immobilization Of Dehalogenated Salt Waste, Matthew Aaron Page

All Theses

Electrochemical reprocessing can be used to recycle presently stored nuclear fuel and consists of dissolving that used fuel in molten salt and the waste produced from these processes is a small amount of a high-level salt waste. Vitrification has been selected as the primary means of safely disposing high and low level radioactive waste. This is due to glass’ ability to incorporate many elements within its matrix, and it is chemically durable with the addition of network formers and other glass forming chemicals. With over 90,000 tonnes of nuclear waste in the United States, the avoidance of additional steps required …


An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster Dec 2022

An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster

All Theses

This research considers the problem of using bistable laminates as a mechanical deterrent to the impending impact of a particle. The structure will be controlled through an algorithm that will utilize piezoelectric devices to activate them in unison with the bistable laminate to successfully deter. A novel experimental setup will be constructed to ensure that the bistable laminate stays fixed when acting as a mechanical deterrent. Piezoelectricity is the main driving force of the bistable laminate to morph and this study will use a Macro Fiber Composite (MFC) actuator that contains piezoelectric ceramic rods in a patch to transfer electrical …


Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht Aug 2022

Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht

All Theses

Abstract

The understanding of microstructural damage mechanisms is the foundation of better understanding existing materials and future material development. There are significant challenges to measuring these damage mechanisms in-situ as continuous observation of the state of the microstructure is difficult or impossible for many experimental setups. This thesis presents a method for measuring grain boundary sliding (GBS) and local strain concentrations in-situ via a Heaviside function based algorithm. GBS is the shearing of two grains along their shared grain boundary and is a common damage mechanism in creep which presents as a discontinuity that can be measured with a Heaviside …


Characterization Of Thermal Gelation Properties In Bioresorbable Thermally Activated Hydrogel Polymers For Hernia Surgery Applications, Alexander Mayfield Aug 2022

Characterization Of Thermal Gelation Properties In Bioresorbable Thermally Activated Hydrogel Polymers For Hernia Surgery Applications, Alexander Mayfield

All Theses

Hydrogel adhesives are a new class of materials with excellent biocompatibility, which makes them very attractive for biomaterial applications. It has been previously shown that Tetronic T1107, a four-arm poly (propylene oxide)-poly (ethylene oxide) (PPO-PEO) block copolymer, is useful as a chemical crosslinking thermo-responsive hydrogel for bioadhesive applications. The end groups of this polymer are modified with acrylate and N-hydroxysuccinimide (NHS) functional groups. The acrylate end group gives the polymer cohesive properties with long-range chemical crosslinking using dithiothreitol (DTT), while the NHS end group gives the polymer adhesive properties through bonding with amines found in organic tissue. It was found …


Sub-Bandgap Photon-Assisted Electron Trapping And Detrapping In Algan/Gan Heterostructure Field-Effect Transistors, Andrew Gunn Aug 2022

Sub-Bandgap Photon-Assisted Electron Trapping And Detrapping In Algan/Gan Heterostructure Field-Effect Transistors, Andrew Gunn

All Theses

We have investigated photon-assisted trapping and detrapping of electrons injected from the gate under negative bias in a heterostructure field-effect transistor (HFET). The electron injection rate from the gate was found to be dramatically affected by sub-bandgap laser illumination. The trapped electrons reduced the two-dimensional electron gas (2DEG) density at the AlGaN/GaN heterointerface but could also be emitted from their trap states by sub-bandgap photons, leading to a recovery of 2DEG density. The trapping and detrapping dynamics were found to be strongly dependent on the wavelength and focal position of the laser, as well as the gate bias stress time …


Modeling Hierarchical Porous Electrodes With Tailored Anisotropic Structure, Debanjan Sarker Aug 2022

Modeling Hierarchical Porous Electrodes With Tailored Anisotropic Structure, Debanjan Sarker

All Theses

Modern electric vehicles and consumer electronics applications demand high specific energy from Li-ion batteries, which can be charged and discharged faster. In the search for high specific energy, researchers have tried to make thicker battery electrodes which contain a greater proportion of active material. While chemical and structural modification of electrodes can help to increase the electronic conductivity of active material, the microstructure of porous electrodes can be engineered to enhance ion transport for fast charge and discharge. Previous research has shown that macropores introduced by directional freeze tape casting can enhance the performance of thick porous electrodes. For instance, …


Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley May 2022

Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley

All Theses

Nature is frequently turned to for inspiration for the creation of new materials. Insect antennae are hollow, blood-filled fibers with complex shape, and are cantilevered at the head. The antenna is muscle-free, but the insect can controllably flex, twist, and maneuver it laterally. To explain this behavior, a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly) was performed. These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle fibers (Manduca sexta) or strain-adaptive fibers that stiffen when stretched (Vanessa cardui …


Near-Earth Ion Irradiation Effects On Functional Ceramic Materials: A Combined Experimental-Monte Carlo Approach, William J. Sands May 2022

Near-Earth Ion Irradiation Effects On Functional Ceramic Materials: A Combined Experimental-Monte Carlo Approach, William J. Sands

All Theses

The near-Earth space radiation environment is a complex system that creates a harmful environment for materials to operate in. Motivated by the search for using optical defects as an indicator of radiation damage, five single-crystal functional ceramic materials were selected to undergo ion irradiation at conditions found in the near-Earth space environment. Due to the complex nature of ion irradiation effects in ceramic materials, a host of calculations and experimental characterization methods were used. Calculations using the 2013 SRIM code were used to evaluate the ion projected range and the type and number of defects (vacancies) created by ion irradiation. …


Mechanochromic Tunable Emissions Of Hydrogel Encapsulated Radioluminescent Crystalline Colloidal Arrays, Sarah Mell May 2022

Mechanochromic Tunable Emissions Of Hydrogel Encapsulated Radioluminescent Crystalline Colloidal Arrays, Sarah Mell

All Theses

Crystalline colloidal arrays (CCAs) are periodic dielectric arrays composed of monodisperse, negatively charged nanoparticles with unique optical characteristics. Poly(styrene-co-propargyl acrylate) (PS-PA) based copolymer nanoparticles synthesized via an emulsion polymerization form the basis of the CCAs in this work. The negatively charged surfaces result in the colloidal nanoparticles self-assembling into a face-centered cubic (fcc) crystal-like structure. The long-range order and spatial periodicity of the array result in a rejection wavelength, characteristic of CCAs, in which a specific wavelength of light is forbidden from propagating throughout the optical system. The CCAs exhibit mechanochromism through a rejection wavelength shift corresponding to a change …


A Study On Effect Of Manufacturing Parameters On Morphology Of A356 Aluminum Foam, Nikhil Nanabhau Mahajan May 2022

A Study On Effect Of Manufacturing Parameters On Morphology Of A356 Aluminum Foam, Nikhil Nanabhau Mahajan

All Theses

Metal foams have shown an excellent promise for usage as multifunctional material concerning research & development in the last 20 years. They provide remarkable mechanical as well as physical properties being lightweight. Open-cell metal foams have already been used in sound and noise absorption. Open-cell metal foams are outstanding for use in heat exchangers, filters, and many more applications, while closed-cell foams show excellent characteristics in impact energy absorptions. Closed-cell metal foams have higher energy absorption than their solid parent metal as they convert most of the impact energy into deformation energy. Metal foams have been used as prominent safeguard …


Investigating The Effects Of Sic Abrasive Particles On Friction Element Welding, Gaurav Awate May 2022

Investigating The Effects Of Sic Abrasive Particles On Friction Element Welding, Gaurav Awate

All Theses

The growing demands on reducing the harmful emissions from automobiles have forced automakers to reduce the weight of the vehicle. The increasing demands on improving the fuel economy also has challenged automotive manufacturers to make the vehicle as lightweight as possible. However, the challenge is also to ensure that the vehicle meets safety standards. For the vehicle to meet these standards, it needs to be of adequate strength as well. Automotive manufacturers have adopted a strategy of using multi-material construction to achieve the target. But with multi-material construction comes the requirement of advanced joining techniques that are capable of joining …