Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

The Architecture Selection, Design, And Discharge Modeling Of A Passive Compensation, Iron-Core, Two-Phase, Permanent Magnet Compulsator To Power A Small Railgun Platform, Collin Macgregor Dec 2012

The Architecture Selection, Design, And Discharge Modeling Of A Passive Compensation, Iron-Core, Two-Phase, Permanent Magnet Compulsator To Power A Small Railgun Platform, Collin Macgregor

Aerospace Engineering

The goal of this project was to design and build a compensated pulsed alternator, or compulsator, to power the Cal Poly Electromagnetic Railgun Mark 1.1. This project examines the feasibility of implementing mechanical pulsed power supplies for repeatable use with a railgun load for orbital debris hypervelocity testing. The final system architecture chosen was a passively compensated, iron-core, 2-phase, permanent magnet compulsator. The Cal Poly Compulsator will be capable of storing 45 kJ of mechanical energy with a peak operating speed of 5,000 rpm at 190 V. Theoretical calculations resulted in the following predicted electrical performance values: a peak output …


Design, Fabrication, And Testing Of An Electromagnetic Rail Gun For The Repeated Testing And Simulation Of Orbital Debris Impacts, Jeff Maniglia, Jordan Smiroldo, Alex Westfall, Guy Zohar Jun 2011

Design, Fabrication, And Testing Of An Electromagnetic Rail Gun For The Repeated Testing And Simulation Of Orbital Debris Impacts, Jeff Maniglia, Jordan Smiroldo, Alex Westfall, Guy Zohar

Aerospace Engineering

An Electromagnetic Railgun (EMRG) was designed, built, and tested, capable of firing a projectile a 1 gram projectile at 650 m/s muzzle velocity. The EMRG utilizes an injector, a high voltage power supply, a capacitor bank, inductors and rails. The injector fires 2300 psig Nitrogen gas into the system to provide an initial velocity. The high voltage power supply charges the capacitor bank. The capacitor bank discharges the electric potential built up through the projectile while inside the rails in order to create the EMRG’s force. The inductors are used to pulse form the capacitor bank in order to get …