Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Hydrogen Generation From Eosin Y-Sensitized Pt/Zno Under Solar Light Irradiation, Tianfang Tian May 2018

Hydrogen Generation From Eosin Y-Sensitized Pt/Zno Under Solar Light Irradiation, Tianfang Tian

Electronic Thesis and Dissertation Repository

Hydrogen is a promising alternative energy carrier. Generating hydrogen via photocatalysts is clean and energy saving comparing to the current technology for hydrogen generation. ZnO has been proved to have photocatalytic activities for wastewater treatment by multiple studies. However, there are not enough studies to investigate its potential to generate hydrogen as the photocatalyst under light irradiation. Therefore, we will investigate the photocatalytic ability of Pt/ZnO to generate hydrogen. Triethanolamine (TEOA) was used as sacrificial reagent while Eosin Y was used as sensitizer. Pt/ZnO was characterized and tested for its activity for hydrogen generation in different conditions, which are platinum …


Evaluation Of Voc Degradation In Photo-Catalytic Air Reactors: Tio2 Immobilization, Energy Efficiency And Kinetic Modeling, Cristina S. Lugo Vega Aug 2016

Evaluation Of Voc Degradation In Photo-Catalytic Air Reactors: Tio2 Immobilization, Energy Efficiency And Kinetic Modeling, Cristina S. Lugo Vega

Electronic Thesis and Dissertation Repository

The high VOC emissions from anthropogenic sources are detrimental to both the environment and humans, contributing with ground-level ozone and particle matter formation. Heterogeneous photocatalysis provides significant potential for VOC degradation. However, the approaches to be used for photocatalyst immobilization in scaled and highly efficient photoreactors are still not well established. Furthermore, there is a lack of reported photonic efficiencies and a shortage of required methods to establish these efficiencies.

To address these issues, this PhD Dissertation reports the study of photonic efficiencies, TiO2 immobilization on a stainless steel mesh and kinetic models in a scaled-up Photo-CREC-Air Reactor. Acetone …


Solar Photocatalytic Reduction Of Zn2+ Using Graphene-Based Tio2 Composite Catalyst For Application To Cso Treatment, Gloria Kumordzi Apr 2015

Solar Photocatalytic Reduction Of Zn2+ Using Graphene-Based Tio2 Composite Catalyst For Application To Cso Treatment, Gloria Kumordzi

Electronic Thesis and Dissertation Repository

The improvement of photocatalyst efficiency in utilizing the majority of wavelengths in the solar spectrum, an abundant natural resource, presents the next step in the large scale application of photocatalysis for the treatment of dissolved organic and inorganic pollutants in wastewater. In this study, a composite catalyst of TiO2 and Graphene synthesized by a hydrothermal treatment method is used to photo-reduce Zn2+, the most abundant heavy metal found in combined sewer overflows (CSOs). The performance of this composite catalyst was assessed under various process conditions such as pH, light intensity, catalyst loading and light source. The TiO …


Antibacterial Studies On Titania Polyurethane Nanocomposite Coatings, Koosha Azhie Apr 2014

Antibacterial Studies On Titania Polyurethane Nanocomposite Coatings, Koosha Azhie

Electronic Thesis and Dissertation Repository

While temporary disinfection of a surface is possible with the help of strong cleaners, tremendous interest exists for the control of microorganisms on surfaces by effective, durable antimicrobial coatings. There is a wide spectrum of potential applications for antibacterial coatings, spanning from industrial surface coatings to biomedical applications, where sterile conditions are crucial. This work examined the synthesis of the functionalized 2,2-Dimethylolpropionic acid - nanotitanium dioxide (DMPA-nTiO2) monomer. Moreover, functionalized nanotitanium dioxide/polyurethane (nTiO2/PU) composite coatings were prepared using the above mentioned functionalized monomer. The distribution of nTiO2 in the polymer matrix was enhanced by monomer …


A Comprehensive Study Of Cd(Ii) Removal From Aqueous Solution Via Adsorption And Solar Photocatalysis, Samindika Athapaththu Dec 2013

A Comprehensive Study Of Cd(Ii) Removal From Aqueous Solution Via Adsorption And Solar Photocatalysis, Samindika Athapaththu

Electronic Thesis and Dissertation Repository

As the increase in industrial technology continue to progress, it results in the increase in heavy metal pollution, creating harmful effects on humans, plants, and animals. Since toxic metals do not degrade easily, they accumulate over time, posing greater danger to living organisms. Removal of these heavy metals is therefore, of great importance. Though many research studies successfully utilized UV photocatalysis with TiO2 catalyst for the removal of Cd2+, none have performed the photoreduction of Cd2+ under visible light using eosin-y dye-sensitized TiO2. The objective of the present research is to study the photocatalytic …


Self-Cleaning Polyurethane And Polyester Coatings, Yixing Tang Jan 2013

Self-Cleaning Polyurethane And Polyester Coatings, Yixing Tang

Electronic Thesis and Dissertation Repository

Self-cleaning titanium dioxide (TiO2) based polyurethane and polyester nanocomposites were synthesized, characterized and tested in this thesis. A monomer functionalization method (“grafting from” polymerization) was used for synthesizing both novel nano-TiO2 coordinated polyurethanes (nano-TiO2-PU) and nano-TiO2/polyester nanocomposites. This technique provides the advantage of directly attaching nanoparticles to the polymer backbone.

For polyurethane synthesis, two different methods (one-shot and pre-polymer) were explored. Using several characterization techniques, product from the pre-polymer method showed better mechanical properties; therefore, the pre-polymer method was chosen for subsequent nano-TiO2-PU synthesis. In the nano-TiO2-PU synthesis, the …


Photocalytic Degradation Of Malic Acid Under Thin Coated Tio2, Vanessa Silveira Rodgher Dec 2012

Photocalytic Degradation Of Malic Acid Under Thin Coated Tio2, Vanessa Silveira Rodgher

Electronic Thesis and Dissertation Repository

Opaque fluids have a limited irradiation transmission. Thus, their decontamination employing near UV irradiation poses significant technical challenges. In the present study, a thin UV-transparent/waterproof glue layer coated with a 1.5 wt% of TiO2 and a new PhotoReactor Cell were implemented. TiO2 irradiation in the PhotoReactor Cell was effected on the TiO2 particle side, not directly in contact with the fluid, allowing the postulation of an “h+” site mobility mechanism on photocatalysis.

Photocatalytic degradation experiments with malic and malonic acid in water at 10, 20, 30 and 40 ppm showed the complete degradation of malic …


Nano Tio2/Graphene Composites For Photovoltaic And Photocatalytic Materials, Nasrin Farhangi Sep 2012

Nano Tio2/Graphene Composites For Photovoltaic And Photocatalytic Materials, Nasrin Farhangi

Electronic Thesis and Dissertation Repository

Graphene has been recognized as one of the most exciting carbon based materials of the present decade due to its unique electronic, mechanical and thermal properties. High surface area exfoliated graphene sheets with controllable surface functionality is an attractive two-dimensional surface for attaching different metals and semiconductors for improving the performance of catalysts, sensors, photoelectronic and energy conversion devices. Graphene is an ideal material which can be used for improving various metal oxide properties such as those of titania (TiO2). TiO2/graphene composites have shown excellent properties compared to bare TiO2 in various applications. In high …


Water Treatment Using Advanced Oxidation Processes: Application Perspectives, Charles R. Gilmour Aug 2012

Water Treatment Using Advanced Oxidation Processes: Application Perspectives, Charles R. Gilmour

Electronic Thesis and Dissertation Repository

Advanced oxidation processes (AOPs) using hydroxyl radicals and other oxidative radical species are being studied extensively for removal of organic compounds from various waste streams. However, large scale applications of these highly effective technologies in water and wastewater treatment are still very limited due to cost and inadequate information about the resultant water quality. This study focuses on the evaluation of the upstream processing and downstream post treatment analysis of selective AOPs. In the first stage of research, the performance of a proprietary catalyst (VN-TiO2) was compared with the industry standard P25 TiO2, for the use …


Photocatalytic Degradation Of Phenolic Compounds In Water: Irradiation And Kinetic Modeling, Jesus Moreira Del Rio Aug 2011

Photocatalytic Degradation Of Phenolic Compounds In Water: Irradiation And Kinetic Modeling, Jesus Moreira Del Rio

Electronic Thesis and Dissertation Repository

Scaling up a photoreactor requires both knowledge of optical properties of the slurry medium and an established kinetic model. Measuring the scattering and absorption coefficients of particles suspended in water involves the use of specialized optical equipment, as well as the partial solution of the radiative transfer equation (RTE). In addition, modeling of the radiation field in photoreactors with complicated geometries offers special challenges.

On the other hand, most of the kinetic models (KM) for phenol photodegradation reported in the literature were obtained for a single organic chemical species only. In fact, neglecting all the intermediate species generated during the …


Development Of A Novel Tio2-Polymeric Photocatalyst For Water Purification Both Under Uv And Solar Illuminations, Debjani Mukherjee Jun 2011

Development Of A Novel Tio2-Polymeric Photocatalyst For Water Purification Both Under Uv And Solar Illuminations, Debjani Mukherjee

Electronic Thesis and Dissertation Repository

Comprising about 70% of the Earth’s surface, water is undoubtedly the most precious natural resource. According to the W.H.O, around 3.5 million people are dying every year from different water related diseases. Different kinds of dyes and pharmaceutical products have been detected in drinking water, all over the world. These organic compounds being non removable by traditional water purification processes, made advanced oxidation processes come into existence. Among all kind of advanced oxidation processes, photocatalytic oxidation is the most promising one. The photocatalytic process is based on aqueous phase hydroxyl radical chemistry and couples low energy UV light with semiconductors …