Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Developing Multi-Species Brain-Strain-Based Scaling Law Using Finite Element Analysis., Xingyu Liu Jul 2021

Developing Multi-Species Brain-Strain-Based Scaling Law Using Finite Element Analysis., Xingyu Liu

Electronic Thesis and Dissertation Repository

To better understand traumatic brain injury (TBI), various laboratory animal experiments have been developed. However, there lacks an effective scaling to connect animal TBI models with human brain injuries. With the help of the finite element (FE) model, brain mechanical responses such as strains can be predicted, and hence can serve as a parameter to facilitate animal to human scaling, as these tissue-level strains directly link to neuronal damage. In this thesis, first, a comprehensive comparison of brain strains between animal TBI models and human TBI cases was conducted. Then, a brain-strain-based scaling law between mouse and human was developed, …


In Vitro Analyses Of The Contributions Of The Hip Capsule To Joint Biomechanics, Emma Donnelly Jan 2021

In Vitro Analyses Of The Contributions Of The Hip Capsule To Joint Biomechanics, Emma Donnelly

Electronic Thesis and Dissertation Repository

Optimal management of the hip capsule during arthroscopic surgery has not been established. The impact of incisions made to the capsule during minimally invasive procedures on joint biomechanics, and whether repair provides any benefit, continue to be debated. The effectiveness of capsular repair to restore native kinematics may be insufficient. Therefore, a better understanding of joint behavior during various capsule conditions is needed. A new robotic system was used to analyze the effect of progressive capsulotomy incision and repairs on the behavior of a normal hip within range of motion (ROM) limits with respect to the intact joint. Complete repairs …