Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Novel Electroconductive Nanofibrous Scaffold For Bone Regeneration, Mitchell Kenter Jun 2022

A Novel Electroconductive Nanofibrous Scaffold For Bone Regeneration, Mitchell Kenter

Medical Engineering Theses

The goal of this study was to develop a biodegradable and conductive scaffold to mimic the piezoelectric properties of bone and the architecture of the extracellular matrix. Poly(3,4- ethylenedioxythiophene) (PEDOT) is a conductive polymer of great interest in tissue engineering due to excellent electrical stability and biocompatibility. To enhance its conductivity, dopants such as dimethyl sulfoxide (DMSO) can be added. Engineered graphene oxide (GO) can also be introduced as oxidant to enhance conductivity and mechanical properties. PEDOT nanocomposites were synthesized by oxidative polymerization of 3, 4-Etylenedioxythiophene monomer (EDOT) in the presence of GO, DMSO, ferric chloride and various solvents. The …


Estimation Of The Fatigue Life Of Additively Manufactured Metallic Components Using Modified Strain Life Parameters Based On Surface Roughness, Peter Grohs Dec 2019

Estimation Of The Fatigue Life Of Additively Manufactured Metallic Components Using Modified Strain Life Parameters Based On Surface Roughness, Peter Grohs

Masters Theses

In this study, a method is developed to estimate the effects of surface roughness on the fatigue life of additively manufactured titanium Ti6Al4V, aluminum 7075–T6, and steel 4340 alloys through modified strain life parameters using finite element analysis (FEA). This method is highly beneficial to the fatigue analysis of as-built additively manufactured metal components, which possess rough surfaces that reduce fatigue life significantly but are challenging to analyze directly using finite element simulation because of complex geometries, i.e., modeling an exact surface profile is arduous.

An effective stress concentration factor, incorporating roughness data, is defined to quantify their effects on …


3d Printed Bone Supplement Materials, Azem Khalifa Yahamed Apr 2016

3d Printed Bone Supplement Materials, Azem Khalifa Yahamed

Dissertations

Three-dimensional (3D) printing is an advanced rapid technology that can be used to make human bone substitutes with exact shape and designed structures, based on models created from actual individual bone medical Digital Imaging and Communications in Medicine (DICOM) images. Biocompatible polymers have been selected for 3D printing of human bone structures. The thermoplastics were 3D printed with Fused Deposition Modeling (FDM) are Acrylate Butadiene Styrene (ABS), Polylactic Acid (PLA) and ULTEM 9085 (a polyetherimide). The polyamide PA 2200 was 3D printed using Selective Laser Sintering (SLS). Digital ABS (a crosslinked acrylic polymer) was 3D printed using PolyJet Technology. These …