Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Decoding Complexity In Metabolic Networks Using Integrated Mechanistic And Machine Learning Approaches, Tolutola Timothy Oyetunde Dec 2018

Decoding Complexity In Metabolic Networks Using Integrated Mechanistic And Machine Learning Approaches, Tolutola Timothy Oyetunde

McKelvey School of Engineering Theses & Dissertations

How can we get living cells to do what we want? What do they actually ‘want’? What ‘rules’ do they observe? How can we better understand and manipulate them? Answers to fundamental research questions like these are critical to overcoming bottlenecks in metabolic engineering and optimizing heterologous pathways for synthetic biology applications. Unfortunately, biological systems are too complex to be completely described by physicochemical modeling alone.

In this research, I developed and applied integrated mechanistic and data-driven frameworks to help uncover the mysteries of cellular regulation and control. These tools provide a computational framework for seeking answers to pertinent biological …


Revelation Of Yin-Yang Balance In Microbial Cell Factories By Data Mining, Flux Modeling, And Metabolic Engineering, Gang Wu May 2016

Revelation Of Yin-Yang Balance In Microbial Cell Factories By Data Mining, Flux Modeling, And Metabolic Engineering, Gang Wu

McKelvey School of Engineering Theses & Dissertations

The long-held assumption of never-ending rapid growth in biotechnology and especially in synthetic biology has been recently questioned, due to lack of substantial return of investment. One of the main reasons for failures in synthetic biology and metabolic engineering is the metabolic burdens that result in resource losses. Metabolic burden is defined as the portion of a host cells resources either energy molecules (e.g., NADH, NADPH and ATP) or carbon building blocks (e.g., amino acids) that is used to maintain the engineered components (e.g., pathways). As a result, the effectiveness of synthetic biology tools heavily dependents on cell capability to …