Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

1996

Array

Articles 1 - 1 of 1

Full-Text Articles in Engineering

A Hybrid-Seed Smart Pixel Array For A Four-Stage Intelligent Optical Backplane Demonstrator, David R. Rolston, David V. Plant, Ted H. Szymanski, Harvard Scott Hinton, W. S. Hsiao, Michael H. Ayliffe, David Kabal, Michael B. Venditti, P. Desai, Ashok V. Krishnamoorthy, Keith W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. C. Cunningham, W. Y. Jan Jan 1996

A Hybrid-Seed Smart Pixel Array For A Four-Stage Intelligent Optical Backplane Demonstrator, David R. Rolston, David V. Plant, Ted H. Szymanski, Harvard Scott Hinton, W. S. Hsiao, Michael H. Ayliffe, David Kabal, Michael B. Venditti, P. Desai, Ashok V. Krishnamoorthy, Keith W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. C. Cunningham, W. Y. Jan

Electrical and Computer Engineering Faculty Publications

This paper describes the VLSI design, layout, and testing of a Hybrid-SEED smart pixel array for a four-stage intelligent optical backplane. The Hybrid-SEED technology uses CMOS silicon circuitry with GaAs-AlGaAs multiple-quantum-well modulators and detectors. The chip has been designed based on the HyperPlane architecture and is composed of four smart pixels which act as a logical 4-bit parallel optical channel. It has the ability to recognize a 4-bit address header, inject electrical data onto the backplane, retransmit optical data, and extract optical data from the backplane. In addition, the smart pixel array can accommodate for optical inversions and bit permutations …