Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Electrochemically Active, Novel Layered M-Znv2o6 Nanobelts For Highly Rechargeable Na-Ion Energy Storage, Yan Sun, Chun-Sheng Li, Qiuran Yang, Shulei Chou, Hua-Kun Liu Jan 2016

Electrochemically Active, Novel Layered M-Znv2o6 Nanobelts For Highly Rechargeable Na-Ion Energy Storage, Yan Sun, Chun-Sheng Li, Qiuran Yang, Shulei Chou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Electrode materials with a three-dimensional (3D) layered framework and excellent electrochemical stability can provide a new avenue for enhancing the overall performance of promising sodium ion batteries. Here, we show that layered monoclinic (m) - ZnV2O6 nanobelts with high chemical activity for Na-ion energy storage have been effectively fabricated via a rapid microwave irradiation method over the reaction time of 8 h, in which the fabricating efficiency is 24.5 times greater in comparison with the traditional hydrothermal method. The morphology and phase evolutions were verified by means of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study also …


Nitrogen-Doped Graphene Ribbon Assembled Core-Sheath Mno@Graphene Scrolls As Hierarchically Ordered 3d Porous Electrodes For Fast And Durable Lithium Storage, Yun Zhang, Penghui Chen, Xu Gao, Bo Wang, Heng Liu, Haobin Wu, Hua-Kun Liu, Shi Xue Dou Jan 2016

Nitrogen-Doped Graphene Ribbon Assembled Core-Sheath Mno@Graphene Scrolls As Hierarchically Ordered 3d Porous Electrodes For Fast And Durable Lithium Storage, Yun Zhang, Penghui Chen, Xu Gao, Bo Wang, Heng Liu, Haobin Wu, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Graphene scroll is an emerging 1D tubular form of graphitic carbon that has potential applications in electrochemical energy storage. However, it still remains a challenge to composite graphene scrolls with other nanomaterials for building advanced electrode configuration with fast and durable lithium storage properties. Here, a transition-metal-oxide-based hierarchically ordered 3D porous electrode is designed based on assembling 1D core-sheath MnO@N-doped graphene scrolls with 2D N-doped graphene ribbons. In the resulting architecture, porous MnO nanowires confined in tubular graphene scrolls are mechanically isolated but electronically wellconnected, while the interwoven graphene ribbons offer continuous conductive paths for electron transfer in all directions. …


Engineering Hierarchical Hollow Nickel Sulfide Spheres For High-Performance Sodium Storage, Dan Zhang, Wenping Sun, Yu Zhang, Yuhai Dou, Yinzhu Jiang, Shi Xue Dou Jan 2016

Engineering Hierarchical Hollow Nickel Sulfide Spheres For High-Performance Sodium Storage, Dan Zhang, Wenping Sun, Yu Zhang, Yuhai Dou, Yinzhu Jiang, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries (LIBs) for energy storage due to the abundance of sodium, especially for grid distribution systems. The practical implementation of SIBs, however, is severely hindered by their low energy density and poor cycling stability due to the poor electrochemical performance of the existing electrodes. Here, to achieve high-capacity and durable sodium storage with good rate capability, hierarchical hollow NiS spheres with porous shells composed of nanoparticles are designed and synthesized by tuning the reaction parameters. The formation mechanism of this unique structure is systematically investigated, which is clearly revealed to …


Two-Dimensional Cobalt-/Nickel-Based Oxide Nanosheets For High-Performance Sodium And Lithium Storage, Dan Zhang, Wenping Sun, Zhihui Chen, Yu Zhang, Wenbin Luo, Yinzhu Jiang, Shi Xue Dou Jan 2016

Two-Dimensional Cobalt-/Nickel-Based Oxide Nanosheets For High-Performance Sodium And Lithium Storage, Dan Zhang, Wenping Sun, Zhihui Chen, Yu Zhang, Wenbin Luo, Yinzhu Jiang, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Two-dimensional (2D) nanomaterials are one of the most promising types of candidates for energy-storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt-/nickel-based hydroxides and oxides. The sodium and lithium storage capabilities of Co3O4 nanosheets are evaluated in detail. For sodium storage, the Co3O4 nanosheets exhibit excellent rate capability (e.g., 179 mA h g¿1 at 7.0 A g¿1 and 150 mA h g¿1 at 10.0 A g¿1) and promising cycling performance (404 mA …


Oxygen-Free Layer-By-Layer Assembly Of Lithiated Composites On Graphene For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Xiaowei Chen, Fang Fang, Dalin Sun, Xingguo Li, Zaiping Guo, Xuebin Yu Jan 2016

Oxygen-Free Layer-By-Layer Assembly Of Lithiated Composites On Graphene For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Xiaowei Chen, Fang Fang, Dalin Sun, Xingguo Li, Zaiping Guo, Xuebin Yu

Australian Institute for Innovative Materials - Papers

A facile hydrogenation-induced self-assembly strategy to synthesize lithium hydride (LiH) nanosheets with a thickness of 2 nm that are uniformly distributed on graphene is reported and designed. Taking advantage of LiH nanosheets with high reactivity and a homogeneous distribution on graphene support as a nanoreactor, the confined chemical synthesis of oxygen-free lithiated composites is effectively and efficiently realized.


Wearable Energy-Smart Ribbons For Synchronous Energy Harvest And Storage, Chao Li, Md. Monirul Islam, Julian Moore, Joseph Sleppy, Caleb Morrison, Konstantin K. Konstantinov, Shi Xue Dou, Chait Renduchintala, Jayan Thomas Jan 2016

Wearable Energy-Smart Ribbons For Synchronous Energy Harvest And Storage, Chao Li, Md. Monirul Islam, Julian Moore, Joseph Sleppy, Caleb Morrison, Konstantin K. Konstantinov, Shi Xue Dou, Chait Renduchintala, Jayan Thomas

Australian Institute for Innovative Materials - Papers

No abstract provided.


A Review Of Topologies Of Three-Port Dc-Dc Converters For The Integration Of Renewable Energy And Energy Storage System, Neng Zhang, Danny Sutanto, Kashem M. Muttaqi Jan 2016

A Review Of Topologies Of Three-Port Dc-Dc Converters For The Integration Of Renewable Energy And Energy Storage System, Neng Zhang, Danny Sutanto, Kashem M. Muttaqi

Faculty of Engineering and Information Sciences - Papers: Part A

The application of renewable energy such as solar photovoltaic (PV), wind and fuel cells is becoming increasingly popular because of the environmental awareness and advances in technology coupled with decreasing manufacturing cost. Power electronic converters are usually used to convert the power from the renewable sources to match the load demand and grid requirement to improve the dynamic and steady-state characteristics of these green generation systems, to provide the maximum power point tracking (MPPT) control, and to integrate the energy storage system to solve the challenge of the intermittent nature of the renewable energy and the unpredictability of the load …


Two-Factor Data Security Protection Mechanism For Cloud Storage System, Joseph K. Liu, Kaitai Liang, Willy Susilo, Jianghua Liu, Yang Xiang Jan 2016

Two-Factor Data Security Protection Mechanism For Cloud Storage System, Joseph K. Liu, Kaitai Liang, Willy Susilo, Jianghua Liu, Yang Xiang

Faculty of Engineering and Information Sciences - Papers: Part A

In this paper, we propose a two-factor data security protection mechanism with factor revocability for cloud storage system. Our system allows a sender to send an encrypted message to a receiver through a cloud storage server. The sender only needs to know the identity of the receiver but no other information (such as its public key or its certificate). The receiver needs to possess two things in order to decrypt the ciphertext. The first thing is his/her secret key stored in the computer. The second thing is a unique personal security device which connects to the computer. It is impossible …


Learning Network Storage Curriculum With Experimental Case Based On Embedded Systems, Qingguo Zhou, Jiong Wu, Ting Wu, Jun Shen, Rui Zhou Jan 2016

Learning Network Storage Curriculum With Experimental Case Based On Embedded Systems, Qingguo Zhou, Jiong Wu, Ting Wu, Jun Shen, Rui Zhou

Faculty of Engineering and Information Sciences - Papers: Part A

In this paper, we present an experimental case for the course of "Network Storage and Security," which benefited from an improved learning outcome for our students. The newly designed experiments-based contents are merged into the current course to help students obtain practical experiences about network storage. The experiments aim to build a network storage system based on available resources instead of any specialized network storage equipment. Technically, students can learn general practical knowledge of network storage on iSCSI (a network storage protocol based on IP technology) and also the technologies of embedded system. Through the experimental case, we found that …


Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang Jan 2016

Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang

Australian Institute for Innovative Materials - Papers

Nitrogen-doped carbon coated Co 3 O 4 nanoparticles (Co 3 O 4 @NC) with high Na-ion storage capacity and unprecedented long-life cycling stability are reported in this paper. The Co 3 O 4 @NC was derived from a metal – organic framework ZIF-67, where the Co ions and organic linkers were, respectively, converted to Co 3 O 4 nanoparticle cores and nitrogen-doped carbon shells through a controlled two-step annealing process. The Co 3 O 4 @NC shows a porous nature with a surface area of 101 m 2 g 1 . When applied as an anode for sodium ion batteries …


Graphene-Wrapped Reversible Reaction For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Feilong Wu, Fang Fang, Dalin Sun, Zaiping Guo, Zhenguo Huang, Xuebin Yu Jan 2016

Graphene-Wrapped Reversible Reaction For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Feilong Wu, Fang Fang, Dalin Sun, Zaiping Guo, Zhenguo Huang, Xuebin Yu

Australian Institute for Innovative Materials - Papers

Here, we report the fabrication of a graphene-wrapped nanostructured reactive hydride composite, i.e., 2LiBH4-MgH2, made by adopting graphene-supported MgH2 nanoparticles (NPs) as the nanoreactor and heterogeneous nucleation sites. The porous structure, uniform distribution of MgH2 NPs, and the steric confinement by flexible graphene induced a homogeneous distribution of 2LiBH4-MgH2 nanocomposite on graphene with extremely high loading capacity (80 wt%) and energy density. The well-defined structural features, including even distribution, uniform particle size, excellent thermal stability, and robust architecture endow this composite with significant improvements in its hydrogen storage performance. For instance, at a temperature as low as 350 °C, a …


All-In-One Energy Harvesting And Storage Devices, Ju-Hyuck Lee, Jeonghun Kim, Tae Yun Kim, Md Shahriar Hossain, Sang Woo Kim, Jung Ho Kim Jan 2016

All-In-One Energy Harvesting And Storage Devices, Ju-Hyuck Lee, Jeonghun Kim, Tae Yun Kim, Md Shahriar Hossain, Sang Woo Kim, Jung Ho Kim

Australian Institute for Innovative Materials - Papers

Currently, integration of energy harvesting and storage devices is considered to be one of the most important energy-related technologies due to the possibility of replacing batteries or at least extending the lifetime of a battery. This review aims to describe current progress in the various types of energy harvesters, hybrid energy harvesters, including multi-type energy harvesters with coupling of multiple energy sources, and hybridization of energy harvesters and energy storage devices for self-powered electronics. We summarize research on recent energy harvesters based on the piezoelectric, triboelectric, pyroelectric, thermoelectric, and photovoltaic effects. We also cover hybrid cell technologies to simultaneously generate …