Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez Dec 2022

Feasibility Study Of Slotted, Natural-Laminar-Flow Airfoils For High-Lift Applications, Hector David Ortiz Melendez

Doctoral Dissertations

A computational fluid dynamics approach to evaluate the feasibility of a slotted, natural-laminar-flow airfoil designed for transonic applications, to perform as a high-lift system was developed. Reynolds-Averaged Navier-Stokes equations with a laminar-turbulent transition model for subsonic flow at representative flight conditions were used for this analysis. Baseline high-lift simulations were performed to understand the stall characteristics of the slotted, natural-laminar-flow airfoil. Maximum aerodynamic efficiency was observed with a constant slot-width. In addition, the effectiveness of the aft-element as a high-lift device was explored. Results indicate that a micro-flap is a viable option as a lift effector. These are most effective …


Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul Aug 2021

Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul

Doctoral Dissertations

Vanadium redox flow batteries are a promising large-scale energy storage technology, but a number of challenges must be overcome for commercial implementation. At the cell level, mass transport contributes significantly to performance losses, limiting VRFB performance. Therefore, understanding mass transport mechanisms in the electrode is a critical step to mitigating such losses and optimizing VRFBs.

In this study, mass transport mechanisms (e.g. convection, diffusion) are investigated in a VRFB test bed using a strip cell architecture, having 1 cm2 active area. It is found that diffusion-dominated cells have large current gradients; convection-dominated cells have relatively uniform current distribution from …


Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg May 2016

Improving Ventricular Catheter Design Through Computational Fluid Dynamics, Sofy Hefets Weisenberg

Masters Theses

Cerebrospinal fluid (CSF) shunts are fully implantable medical devices that are used to treat patients suffering from conditions characterized by elevated intracranial pressure, such as hydrocephalus. In cases of shunt failure or malfunction, patients are often required to endure one or more revision surgeries to replace all or part of the shunt. One of the primary causes of CSF shunt failure is obstruction of the ventricular catheter, a component of the shunt system implanted directly into the brain's ventricular system. This work aims to improve the design of ventricular catheters in order to reduce the incidence of catheter obstruction and …


A Validation Of The P-Sllod Equations Of Motion For Homogeneous Steady-State Flows, David J. Keffer, B. J. Edwards, C. Baig Jan 2006

A Validation Of The P-Sllod Equations Of Motion For Homogeneous Steady-State Flows, David J. Keffer, B. J. Edwards, C. Baig

Faculty Publications and Other Works -- Chemical and Biomolecular Engineering

A validation of the p-SLLOD equations of motion for nonequilibrium molecular dynamics simulation under homogeneous steady-state flow is presented. We demonstrate that these equations generate the correct center-of-mass trajectory of the system, are completely compatible with (and derivable from) Hamiltonian dynamics, satisfy an appropriate energy balance, and require no fictitious external force to generate the required homogeneous flow. It is also shown that no rigorous derivation of the SLLOD equations exists to date.