Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Theses/Dissertations

2015

Synchrophasor

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Wide-Area Synchrophasor Measurement Applications And Power System Dynamic Modeling, Yin Lei Dec 2015

Wide-Area Synchrophasor Measurement Applications And Power System Dynamic Modeling, Yin Lei

Doctoral Dissertations

The use of synchrophasor measurements system-wide has been providing significant assistance for grid dynamic monitoring, situation awareness and reliability improvement. Frequency Monitoring Network (FNET), as an academia-run synchrophasor measurement system, utilizes a large number of Internet-connected low-cost Frequency Disturbance Recorders (FDRs) installed at the distribution level to measure power system dynamics and provide both online and off-line applications, such as event detection, oscillation modes estimation, event replay, etc. This work aims to further explore applications of the FNET measurements and utilize measurement-based method in dynamic modeling.

Measurement-based dynamic reduction is an important application of synchrophasor measurement, especially considering the fact …


A 3rd Generation Frequency Disturbance Recorder: A Secure, Low Cost Synchophasor Measurement Device, Jerel Alan Culliss Aug 2015

A 3rd Generation Frequency Disturbance Recorder: A Secure, Low Cost Synchophasor Measurement Device, Jerel Alan Culliss

Doctoral Dissertations

The Frequency Monitoring Network (FNET) is a wide-area phasor measurement system developed in 2003. It collects power system data using embedded devices known as Frequency Disturbance Recorders (FDRs) which are installed at distribution level voltages. These devices are single-phase synchrophasor measurement units which share a number of common attributes with their commercial counterparts.

Phasor measurements from FDRs across North America and other power grids around the world are transmitted over the Internet back to the FNET servers at the University of Tennessee. By analyzing the fluctuations in the grid’s frequency, FNET can identify disruptive events relating to the operation of …