Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Nov 2011

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Faculty Publications

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar Jan 2011

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar

Faculty Publications

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


Single-Particle Model For A Lithium-Ion Cell: Thermal Behavior, Meng Guo, Godfrey Sikha, Ralph E. White Jan 2011

Single-Particle Model For A Lithium-Ion Cell: Thermal Behavior, Meng Guo, Godfrey Sikha, Ralph E. White

Faculty Publications

The single-particle model presented by Santhanagopalan et al. [ J. Power Sources , 156 , 620 (2006)] is extended to include an energy balance. The temperature dependence of the solid phase diffusion coefficient of the lithium in the intercalation particles, the electrochemical reaction rate constants, and the open circuit potentials (OCPs) of the positive and negative electrodes are included in the model. The solution phase polarization is approximated using a nonlinear resistance, which is a function of current and temperature. The model is used to predict the temperature and voltage profiles in a lithium-ion cell during galvanostatic operations. The single-particle …