Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Nov 2011

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Faculty Publications

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


Thermal Model For Lithium Ion Battery Pack With Mixed Parallel And Series Configuration, Meng Guo, Ralph E. White Aug 2011

Thermal Model For Lithium Ion Battery Pack With Mixed Parallel And Series Configuration, Meng Guo, Ralph E. White

Faculty Publications

In this work, a mathematical thermal model for lithium ion battery pack with specific configuration was developed by coupling the single particle model and energy balance equation with basic circuit constraints. The temperature variation at different parts of the battery pack was considered in charge/discharge operations, and the dependency of cell parameters on temperature were taken into account. The model was validated by comparing the simulated current, voltage, and temperature profiles with experimental data. Case studies such as battery balancing and circuit interruption were also performed and discussed.


Mechanical Characterization Of Polymer Electrolyte Membrane With Optical Methods, Xinyu Huang, Luis Alva, Jay Neutzler Jan 2011

Mechanical Characterization Of Polymer Electrolyte Membrane With Optical Methods, Xinyu Huang, Luis Alva, Jay Neutzler

Faculty Publications

Mechanical properties of polymer electrolyte membrane have important implications in the endurance of many electrochemical energy conversion devices [1]. Mechanical experiments are effective method to reveal discrete damage developed in the membrane by quantifying the change of mechanical strength and toughness. Regular strain measurement methods are overly intrusive to the thin and relatively fragile polymer electrolyte membrane; hence optical-based minimal invasive stress/strain measurement methods are studied.


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar Jan 2011

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar

Faculty Publications

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


Effect Of Titanium Dioxide Supports On The Activity Of Pt-Ru Toward Electrochemical Oxidation Of Methanol, Roderick E. Fuentes, Brenda L. García, John W. Weidner Jan 2011

Effect Of Titanium Dioxide Supports On The Activity Of Pt-Ru Toward Electrochemical Oxidation Of Methanol, Roderick E. Fuentes, Brenda L. García, John W. Weidner

Faculty Publications

TiO2and Nb-TiO2 were investigated as stable supports for Pt-Ru electrocatalysts towards methanol oxidation. X-ray photo-electron spectroscopy (XPS) data for all these TiO2-based supports show oxidation states of Ti4+, with no Ti3+, suggesting low electronic conductivity. However, the deposition of metal nanoparticles onto the supports at loadings of 60 wt% metal dramatically increased conductivity, making these electrodes (metal particles + support) suitable for electrochemistry even though the supports have low conductivity. For some of these TiO2-based supports, the activity of Pt-Ru towards methanol oxidation was excellent, even surpassing the activity …


Single-Particle Model For A Lithium-Ion Cell: Thermal Behavior, Meng Guo, Godfrey Sikha, Ralph E. White Jan 2011

Single-Particle Model For A Lithium-Ion Cell: Thermal Behavior, Meng Guo, Godfrey Sikha, Ralph E. White

Faculty Publications

The single-particle model presented by Santhanagopalan et al. [ J. Power Sources , 156 , 620 (2006)] is extended to include an energy balance. The temperature dependence of the solid phase diffusion coefficient of the lithium in the intercalation particles, the electrochemical reaction rate constants, and the open circuit potentials (OCPs) of the positive and negative electrodes are included in the model. The solution phase polarization is approximated using a nonlinear resistance, which is a function of current and temperature. The model is used to predict the temperature and voltage profiles in a lithium-ion cell during galvanostatic operations. The single-particle …