Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Localization Of Carriers And Polarization Effects In Quaternary Alingan Multiple Quantum Wells, E. Kuokstis, J. Zhang, M.-Y. Ryu, J. W. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. S. Shur Dec 2001

Localization Of Carriers And Polarization Effects In Quaternary Alingan Multiple Quantum Wells, E. Kuokstis, J. Zhang, M.-Y. Ryu, J. W. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. S. Shur

Faculty Publications

We report on observing a long-wavelength band in low-temperature photoluminescence(PL)spectrum of quaternary Al0.22In0.02Ga0.76N/Al0.38In0.01Ga0.61N multiple quantum wells(MQWs), which were grown over sapphire substrates by a pulsed atomic-layer epitaxy technique. By comparing the excitation-power density and temperature dependence of the PLspectra of MQWs and bulk quaternary AlInGaN layers, we show this emission band to arise from the carrier and/or exciton localization at the quantum well interface disorders. PL data for other radiative transitions in MQWs indicate that excitation-dependent spectra position is determined by screening of the built-in electric field.


Ultraviolet Light-Emitting Diodes At 340 Nm Using Quaternary Alingan Multiple Quantum Wells, V. Adivarahan, A. Chitnis, J. P. Zhang, M. Shatalov, J. W. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. S. Shur Dec 2001

Ultraviolet Light-Emitting Diodes At 340 Nm Using Quaternary Alingan Multiple Quantum Wells, V. Adivarahan, A. Chitnis, J. P. Zhang, M. Shatalov, J. W. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. S. Shur

Faculty Publications

An ultraviolet light-emitting diode with peak emission wavelength at 340 nm is reported. The active layers of the device were comprised of quaternary AlInGaN/AlInGaN multiple quantum wells, which were deposited over sapphire substrates using a pulsed atomic-layer epitaxy process that allows precise control of the composition and thickness. A comparative study of devices over sapphire and SiC substrates was done to determine the influence of the epilayer design on the performance parameters and the role of substrate absorption.


Pulsed Atomic Layer Epitaxy Of Quaternary Alingan Layers, J. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. Shur Aug 2001

Pulsed Atomic Layer Epitaxy Of Quaternary Alingan Layers, J. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. Shur

Faculty Publications

In this letter, we report on a material deposition scheme for quaternary AlxInyGa1−x–yN layers using a pulsed atomic layer epitaxy (PALE) technique. The PALE approach allows accurate control of the quaternary layer composition and thickness by simply changing the number of aluminum,indium, and gallium pulses in a unit cell and the number of unit cell repeats. Using PALE, AlInGaN layers with Al mole fractions in excess of 40% and strong room-temperature photoluminescence peaks at 280 nm can easily be grown even at temperatures lower than 800 °C.


Multimode Quantitative Scanning Microwave Microscopy Of In Situ Grown Epitaxial Ba1-XSrXTio3 Composition Spreads, K. S. Chang, M. Aronova, O. Famodu, I. Takeuchi, S. E. Lofland, Jason R. Hattrick-Simpers, H. Chang Jan 2001

Multimode Quantitative Scanning Microwave Microscopy Of In Situ Grown Epitaxial Ba1-XSrXTio3 Composition Spreads, K. S. Chang, M. Aronova, O. Famodu, I. Takeuchi, S. E. Lofland, Jason R. Hattrick-Simpers, H. Chang

Faculty Publications

We have performed variable-temperature multimode quantitative microwavemicroscopy of in situepitaxial Ba1−xSrxTiO3 thin-film composition spreads fabricated on (100) LaA1O3 substrates. Dielectric properties were mapped as a function of continuously varying composition from BaTiO3 to SrTiO3. We have demonstrated nondestructive temperature-dependent dielectric characterization of local thin-film regions. Measurements are simultaneously taken at multiple resonant frequencies of the microscope cavity. The multimode measurements allow frequency dispersion studies. We observe strong composition-dependent dielectric relaxation in Ba1−xSrxTiO3 at microwave frequencies.