Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Water Quality Monitoring And Mapping Using Rapidly Deployable Sensor Nodes, Mohamed Abdelwahab Oct 2023

Water Quality Monitoring And Mapping Using Rapidly Deployable Sensor Nodes, Mohamed Abdelwahab

Theses and Dissertations

Efficient and continuous monitoring of water quality parameters plays a pivotal role in responding to pollution incidents and ensuring the safety of both human consumption and ecological resources. This research introduces an affordable and dependable in-situ water quality sensor package designed for seamless continuous monitoring, providing essential data to facilitate informed decision-making in water resource management. The sensor package enables comprehensive on-site assessment of key water characteristics, including pH, temperature, turbidity (measured in NTU), and total dissolved solids (TDS, measured in ppm). Spatial interpolation techniques, specifically Kriging, are employed to extrapolate variable values at unobserved locations based on nearby measurements. …


A Globalized Optimization Schema For Automated Fiber Placement Processing Parameters, Matthew John Godbold Oct 2023

A Globalized Optimization Schema For Automated Fiber Placement Processing Parameters, Matthew John Godbold

Theses and Dissertations

Automated Fiber Placement is an advanced manufacturing technique for industrial-scale composite structures. Advanced robotics coupled with composite manufacturing results in faster and more consistent results than previously obtained through hand layup. The complexity and interconnectedness of the automated fiber placement process provides a difficult challenge for traditional modeling techniques. Modeling within automated fiber placement currently utilizes physics-based modeling to inform the translation of a design to a manufacturing plan. The intricacy of the automated fiber placement process dictates that attempts at modeling or optimizing these processes are often limited in their scope. Physics-based modeling for manufacturing typically involves numerous interacting …


Simulation-Based Optimization Of A Dc Microgrid: With Machine-Learning-Based Models And Hybrid Meta-Heuristic Algorithms, Tyler Van Deese Oct 2023

Simulation-Based Optimization Of A Dc Microgrid: With Machine-Learning-Based Models And Hybrid Meta-Heuristic Algorithms, Tyler Van Deese

Theses and Dissertations

The field of economic dispatch (ED) focuses on optimizing power flow in a power system to minimize costs. It has the potential to significantly enhance system effectiveness, and efficiency, and reduce operating costs. Various techniques have been employed to tackle this problem, each with its own strengths and weaknesses. One promising approach is simulation-based optimization (SBO), which allows for accurate modeling of system interactions and improved representation of expected results. However, SBO requires running numerous simulations to identify an optimal solution, and there is a possibility of not achieving the global optimum. This work aims to address these challenges using …


A Systems Approach To Design And Plan Sustainable Antifragile Infrastructure Based On Aggregate Footprint And Satisfaction, Farboud Khatami Jul 2023

A Systems Approach To Design And Plan Sustainable Antifragile Infrastructure Based On Aggregate Footprint And Satisfaction, Farboud Khatami

Theses and Dissertations

The concepts of robustness and sustainability in planning and design of water and energy infrastructures have been extensively explored in previous research, primarily focusing on system reliability, environmental considerations, and economic aspects. This study aims to broaden the understanding of these concepts by offering comprehensive frameworks that capture the essence of robustness and sustainability at two distinct levels.

The first level of investigation focuses on the performance of infrastructure networks during natural disasters. Traditionally, this has been addressed using reliability, resilience, and vulnerability metrics. However, these methods rely on static, deterministic, and non-stationary data, which is inadequate when dealing with …


Leveraging Automated Fiber Placement Computer Aided Process Planning Framework For Defect Validation And Dynamic Layup Strategies, Joshua Allen Halbritter Apr 2023

Leveraging Automated Fiber Placement Computer Aided Process Planning Framework For Defect Validation And Dynamic Layup Strategies, Joshua Allen Halbritter

Theses and Dissertations

Process planning represents an essential stage of the Automated Fiber Placement (AFP) workflow. It develops useful and efficient machine processes based upon the working material, composite design, and manufacturing resources. The current state of process planning requires a high degree of interaction from the process planner and could greatly benefit from increased automation. Therefore, a list of key steps and functions are created to identify the more difficult and time-consuming phases of process planning. Additionally, a set of metrics must exist by which to evaluate the effectiveness of the manufactured laminate from the machine code created during the Process Planning …


Comprehensive Process Planning Optimization Framework For Automated Fiber Placement, Alex Ryan Brasington Apr 2023

Comprehensive Process Planning Optimization Framework For Automated Fiber Placement, Alex Ryan Brasington

Theses and Dissertations

Advanced composite materials came about in 1966 and have since been widely used due to the possibility of superior structural performance while also achieving weight reductions. Such opportunities have led to composite materials being used to fabricate complex components, often in the aerospace sector. Most components, especially in aviation, are on a large scale and are outside the capabilities of traditional composite manufacturing techniques. Traditional manufacturing methods are also labor intensive, time consuming, have a high level of material scrap, and are prone to human error. This has led to the need for innovative manufacturing solutions to withstand the ever-increasing …


Optimization Of Vehicle To Grid System In A Power System With Unit Commitment, Charles Uko Apr 2020

Optimization Of Vehicle To Grid System In A Power System With Unit Commitment, Charles Uko

Theses and Dissertations

This thesis provides a comprehensive overview and analysis of the benefits of using plug-in electric vehicles (PEVs) in solving the unit commitment problem. PEVs are becoming more attractive and a rapid replacement of conventional fuel vehicles due to their environmental-friendly operation. Through collective control by an aggregator, PEVs batteries can also provide ancillary services such as load leveling and frequency regulation to improve the quality of power supplied in the power grid and reduce the cost of power generation. This study presents the modeling, simulation, and analysis of a vehicle-to-grid (V2G) system connected to a smart power grid. The model …


Cost And Fuel Usage Optimization Of Activating Solution Based Silica Fume Geopolymer Concrete, Lateef Najeh Assi May 2017

Cost And Fuel Usage Optimization Of Activating Solution Based Silica Fume Geopolymer Concrete, Lateef Najeh Assi

Theses and Dissertations

Development of sustainable construction materials has been the focus of research efforts worldwide in recent years. Concrete is a major construction material; hence, finding alternatives to ordinary Portland cement is of extreme importance due to high levels of carbon dioxide emissions associated with its manufacturing process. Geopolymer concrete is a potential solution; however, concerns about the high cost and the low real fuel energy efficiency are obstacles against its increase in the market share.

In this thesis, the current cost and fuel (thermal energy) usage are calculated. In addition, the cost and fuel usage were optimized based on previous experimental …


Finite Element Analysis Simulations Of Micro And Nano-Electromechanical Sensors For Design Optimization, Nicholas Frank Deroller Dec 2014

Finite Element Analysis Simulations Of Micro And Nano-Electromechanical Sensors For Design Optimization, Nicholas Frank Deroller

Theses and Dissertations

Micro and Nano-electromechanical sensors (MEMS and NEMS) provide a means of actively sensing minute changes in the surrounding environment. Small changes in temperature, momentum, and strain may be sensed in passive modes while greater sensing possibilities exist in active modes. Theoretical femto-gram resolution mass detection and heated element sensing methods may be used while volatile organic compound (VOC) sensing may be achieved when combined with a functionalization layer or device heating. These devices offer a great reduction in cost and offer increased mobility by allowing a "lab-on-chip" solution for the prospective user while also greatly reducing the amount of energy …


Coordinated Control Of Power Electronic Converters In An Autonomous Microgrid, Gholamreza Dehnavi Jan 2013

Coordinated Control Of Power Electronic Converters In An Autonomous Microgrid, Gholamreza Dehnavi

Theses and Dissertations

Advances in power electronics and generation technologies have increased the viability of distributed generation systems. A microgrid is a special category of distributed generation systems that is distinguished by its size and the ability to operate independently as an islanded system. As long as a microgrid is connected to a large grid, quality of the voltage is supported by the main grid and each power source connected to the microgrid generates independently. In contrast, in the islanded operation of microgrids and in electrical islands such as shipboard distribution systems, dynamics are strongly dependent on the connected sources and on the …