Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi May 2021

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research addressed the amount of electric power required to induce specific changes in lift force using a NACA 2127 airfoil with a chord length of ~28 mm, connected to a micro load cell, in a wind tunnel of 103 square centimeter cross-section. A DBD plasma actuator supplied by a ZVS driven high voltage pulsed DC circuit, operating at a frequency of 17.4 kHz, was utilized for voltages of up to 5000 V. Two configurations of electrode gapping were compared to determine the efficient use of power. The configuration with a gap of ~1 mm between the upstream and downstream …


Heat, Mass And Force Flows In Supersonic Shockwave Interactions, John Michael Dixon May 2012

Heat, Mass And Force Flows In Supersonic Shockwave Interactions, John Michael Dixon

UNLV Theses, Dissertations, Professional Papers, and Capstones

There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid …


Optimization Of The Seating Position In A Human-Powered Vehicle, Y. Lei, Mohamed Trabia, D. Too Jun 1993

Optimization Of The Seating Position In A Human-Powered Vehicle, Y. Lei, Mohamed Trabia, D. Too

Mechanical Engineering Faculty Research

Until recently, most of the human-powered vehicles (HPV) were designed focusing solely on its aerodynamics characteristic. In many of these HPV designs, the rider seating position was arbitrarily chosen without consideration of its effect on the rider's comfort and cycling effectiveness. Also, there is no guarantee that the seating position is related to maximum power output. Too (1991) used an experimental approach to determine that the rider will produce the maximum anaerobic power when the seat tube angle of a bicycle is at 75° whereas Hull and Gonzalez (1990) used an engineering approach to optimize the cycling biomechanics. However several …