Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Background Differences In Baseline And Stimulated Mmp Levels Influence Abdominal Aortic Aneurysm Susceptibility, Matthew A. Dale, Melissa K. Suh, Shijia Zhao, Trevor Meisinger, Linxia Gu, Vicki J. Swier, Devendra K. Agrawal, Timothy Greiner, Jeffrey S. Carson, B. Timothy Baxter, Wanfen Xiong Dec 2015

Background Differences In Baseline And Stimulated Mmp Levels Influence Abdominal Aortic Aneurysm Susceptibility, Matthew A. Dale, Melissa K. Suh, Shijia Zhao, Trevor Meisinger, Linxia Gu, Vicki J. Swier, Devendra K. Agrawal, Timothy Greiner, Jeffrey S. Carson, B. Timothy Baxter, Wanfen Xiong

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background. In this study, we hypothesize that susceptibility to abdominal aortic aneurysm (AAA) will be increased in 129/SvEv mice versus C57Bl/6 mice. We tested this hypothesis by assessing differences in aneurysm size, tissue properties, immune response, and MMP expression.

Methods: Mice of C57Bl/6 or 129/SvEv background underwent AAA induction …


Finite Element Analysis Of Covered Microstents, Linxia Gu, Swadeshmukul Santra, Robert A. Mericle, Ashok V. Kumar Jun 2005

Finite Element Analysis Of Covered Microstents, Linxia Gu, Swadeshmukul Santra, Robert A. Mericle, Ashok V. Kumar

Department of Mechanical and Materials Engineering: Faculty Publications

Currently available neuroendovascular devices are inadequate for effective treatment of many wide-necked or fusiform intracranial aneurysms and intracranial carotid-cavernous fistulae (CCF). Placing a covered microstent across the intracranial aneurysm neck and CCF rent could restore normal vessel morphology by preventing blood flow into the aneurysm lumen or CCF rent. To fabricate covered microstents, our research group has developed highly flexible ultra thin (~150 μm) silicone coverings and elastomerically captured them onto commercially available metal stents without stitching. Preliminary in vivo studies were conducted by placing these covered microstents in the common carotid artery of rabbits. The feasibility of using covered …