Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Engineering

Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia Oct 2022

Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia

Doctoral Dissertations

Research studies show that sleep deprivation causes severe fatigue, impairs attention and decision making, and affects our emotional interpretation of events, which makes it a big threat to public safety, and mental and physical well-being. Hence, it would be most desired if we could continuously measure one’s drowsiness and fatigue level, their emotion while making decisions, and assess their sleep quality in order to provide personalized feedback or actionable behavioral suggestions to modulate sleep pattern and alertness levels with the aim of enhancing performance, well-being, and quality of life. While there have been decades of studies on wearable devices, we …


Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre Oct 2022

Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre

Doctoral Dissertations

Many neurological diseases cause motor impairments that limit autonomy and reduce health-related quality of life. Upper-limb motor impairments, in particular, significantly hamper the performance of essential activities of daily living, such as eating, bathing, and changing clothing. Assessment of impairment is necessary for tracking disease progression, measuring the efficacy of interventions, and informing clinical decision making. Impairment is currently assessed by trained clinicians using semi-quantitative rating scales that are limited by their reliance on subjective, visual assessments. Furthermore, existing scales are often burdensome to administer and do not capture patients' motor performance in home and community settings, resulting in a …


Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei Oct 2022

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates. Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces. In Chapter 2, we demonstrate the preparation …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh Oct 2022

Hyperspectral Unmixing: A Theoretical Aspect And Applications To Crism Data Processing, Yuki Itoh

Doctoral Dissertations

Hyperspectral imaging has been deployed in earth and planetary remote sensing, and has contributed the development of new methods for monitoring the earth environment and new discoveries in planetary science. It has given scientists and engineers a new way to observe the surface of earth and planetary bodies by measuring the spectroscopic spectrum at a pixel scale. Hyperspectal images require complex processing before practical use. One of the important goals of hyperspectral imaging is to obtain the images of reflectance spectrum. A raw image obtained by hyperspectral remote sensing usually undergoes conversion to a physical quantity representing the intensity of …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Chromatographic Dynamic Chemisorption, Shreya Thakkar Jun 2022

Chromatographic Dynamic Chemisorption, Shreya Thakkar

Masters Theses

Reaction rates of catalytic cycles over supported metal catalysts are normalized by the exposed metal atoms on the catalyst surface, reported as site time yields which provide a rigorous standard to compare distinct metal surfaces. Defined as the fraction of exposed metal surface atoms to the total number of metal atoms, it is important to measure the dispersion of supported metal catalysts to report standardized rates for kinetic investigations. Multiple characterization techniques such as electron microscopy, spectroscopy and chemisorption are exploited for catalyst dispersion measurements. While effective, electron microscopy and spectroscopy are not readily accessible due to cost and maintenance …


Remote Sensing Of High Latitude Rivers: Approaches, Insights, And Future Ramifications, Merritt E. Harlan Jun 2022

Remote Sensing Of High Latitude Rivers: Approaches, Insights, And Future Ramifications, Merritt E. Harlan

Doctoral Dissertations

High latitude rivers across the pan-Arctic domain are changing due to changes in climate and positive Arctic feedback loops. Understanding and contextualizing these changes is challenging due to a lack of data and methods for estimating and modeling river discharge, and mapping rivers. Remote sensing, and the availability of satellite imagery can provide ways to overcome these challenges. Through combining various forms of fieldwork, modeling, deep learning, and remote sensing, we contribute methodologies and knowledge to three key challenges associated with better understanding high latitude rivers. In the first chapter, we combine field data that can be rapidly deployed with …


Models And Machine Learning Techniques For Improving The Planning And Operation Of Electricity Systems In Developing Regions, Santiago Correa Cardona Jun 2022

Models And Machine Learning Techniques For Improving The Planning And Operation Of Electricity Systems In Developing Regions, Santiago Correa Cardona

Doctoral Dissertations

The enormous innovation in computational intelligence has disrupted the traditional ways we solve the main problems of our society and allowed us to make more data-informed decisions. Energy systems and the ways we deliver electricity are not exceptions to this trend: cheap and pervasive sensing systems and new communication technologies have enabled the collection of large amounts of data that are being used to monitor and predict in real-time the behavior of this infrastructure. Bringing intelligence to the power grid creates many opportunities to integrate new renewable energy sources more efficiently, facilitate grid planning and expansion, improve reliability, optimize electricity …


Improving The Programmability Of Networked Energy Systems, Noman Bashir Jun 2022

Improving The Programmability Of Networked Energy Systems, Noman Bashir

Doctoral Dissertations

Global warming and climate change have underscored the need for designing sustainable energy systems. Sustainable energy systems, e.g., smart grids, green data centers, differ from the traditional systems in significant ways and present unique challenges to system designers and operators. First, intermittent renewable energy resources power these systems, which break the notion of infinite, reliable, and controllable power supply. Second, these systems come in varying sizes, spanning over large geographical regions. The control of these dispersed and diverse systems raises scalability challenges. Third, the performance modeling and fault detection in sustainable energy systems is still an active research area. Finally, …


X-Band Phased-Array Weather-Radar Polarimetry Testbed, William Heberling Iv May 2022

X-Band Phased-Array Weather-Radar Polarimetry Testbed, William Heberling Iv

Doctoral Dissertations

Phased-array weather radar have potential to replace reflector dish radar in major weather radar networks such as NEXRAD, providing faster update times and greater scan flexibility. However, the use of electronic scanning introduces polarization errors on weather radar measurables, requiring polarimetric bias calibration. The sources of polarimetric bias have been described theoretically, but experimental verification is still limited. Additionally, no standard method of calibration for polarimetric bias exists for phased-arrays. Therefore, the University of Massachusetts Amherst (UMass) presents a fully operational X-Band phased-array weather radar polarimetric testbed. The testbed evaluates the calibration of a planar dual-polarization X-band phased-array radar through …


Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy Mar 2022

Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy

Doctoral Dissertations

Block copolymer (BCP) melts undergo microphase seperation and form ordered soft matter crystals with varying domain shapes and symmetries. We study the con- nection between diblock copolymer molecular designs and thermodynamic selection of ordered crystals by modeling features of variable sub-domain geometry filled with individual blocks within non-canonical sphere-like and network phases that together with layered, cylindrical and canonical spherical phases forms “natural forms” of self- assembled amphiphilic soft matter at large. First, we present a model to revise our understanding of optimal Frank-Kasper sphere-like morphologies by advancing the- ory to account for varying domain volumes. We then develop generic …


Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand Mar 2022

Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand

Doctoral Dissertations

Hybrid particle-mesh numerical approaches are proposed to solve incompressible fluid flows. The methods discussed in this work consist of a collection of particles each wrapped in their own polygon mesh cell, which then move through the domain as the flow evolves. Variables such as pressure, velocity, mass, and momentum are located either on the mesh or on the particles themselves, depending on the specific algorithm described, and each will be shown to have its own advantages and disadvantages. This work explores what is required to obtain local conservation of mass, momentum, and convergence for the velocity and pressure in a …


Decision-Analytic Models Using Reinforcement Learning To Inform Dynamic Sequential Decisions In Public Policy, Seyedeh Nazanin Khatami Mar 2022

Decision-Analytic Models Using Reinforcement Learning To Inform Dynamic Sequential Decisions In Public Policy, Seyedeh Nazanin Khatami

Doctoral Dissertations

We developed decision-analytic models specifically suited for long-term sequential decision-making in the context of large-scale dynamic stochastic systems, focusing on public policy investment decisions. We found that while machine learning and artificial intelligence algorithms provide the most suitable frameworks for such analyses, multiple challenges arise in its successful adaptation. We address three specific challenges in two public sectors, public health and climate policy, through the following three essays. In Essay I, we developed a reinforcement learning (RL) model to identify optimal sequence of testing and retention-in-care interventions to inform the national strategic plan “Ending the HIV Epidemic in the US”. …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …


Designing Nonflammable Polymers And Blends Containing Deoxybenzoin Derivatives, Elizabeth Stubbs Feb 2022

Designing Nonflammable Polymers And Blends Containing Deoxybenzoin Derivatives, Elizabeth Stubbs

Doctoral Dissertations

The importance of synthetic polymers in everyday life continues to grow, owing to their societal importance for improving our standard-of-living and enabling advances spanning medicine, electronics, construction materials, transportation. While niche applications occupy a small fraction of the overall volume of polymers produced, large scale applications tend to employ lower cost materials, such as polyethylene, polypropylene, and polystyrene. In addition to environmental considerations connected to these polymerized hydrocarbons, produced in excess of 380 million tons per year worldwide, their inherent flammability creates additional requirements associated with their manufacturing and use. Societal benefits of such polymers are extensive, and thus, there …


Weatherization And Energy Security: A Review Of Recent Events In Ercot, Golbon Zakeri, Maria Hmaria Hernandez, Matthew Lackner, James Manwell Jan 2022

Weatherization And Energy Security: A Review Of Recent Events In Ercot, Golbon Zakeri, Maria Hmaria Hernandez, Matthew Lackner, James Manwell

Publications

Purpose of Review

This review addresses the question of energy security. With the transition of energy generation fleet to cleaner, more sustainable electricity production, energy security is a topic of increasing importance.

Recent Findings

Recent events in Texas brought the concept of energy security to the fore. In this review, we examine the makeup of electricity generation and the causes of the February 2021 blackout of Texas. We will investigate the cost/benefit of winterization in Texas and ask why this was not undertaken subsequent to a similar event in 2011.

Summary

We investigate the case of Texas blackout of February …


Data-Driven Decarbonization Of Residential Heating Systems: An Equity Perspective., John Wamburu, Emma Grazier, David Irwin, Christine Crago, Prashant Shenoy Jan 2022

Data-Driven Decarbonization Of Residential Heating Systems: An Equity Perspective., John Wamburu, Emma Grazier, David Irwin, Christine Crago, Prashant Shenoy

Publications

Since heating buildings using natural gas, propane and oil makes up a significant proportion of the aggregate carbon emissions every year, there is a strong interest in decarbonizing residential heating systems using new technologies such as electric heat pumps. In this poster, we conduct a data-driven optimization study to analyze the potential of replacing gas heating with electric heat pumps to reduce carbon emissions in a city-wide distribution grid. We seek to not only reduce the carbon footprint of residential heating, but also show how to do so equitably. Our results show that lower income homes have an energy usage …


Sustainable Computing - Without The Hot Air, Noman Bashir, David Irwin, Prashant Shenoy, Abel Souza Jan 2022

Sustainable Computing - Without The Hot Air, Noman Bashir, David Irwin, Prashant Shenoy, Abel Souza

Publications

The demand for computing is continuing to grow exponentially. This growth will translate to exponential growth in computing's energy consumption unless improvements in its energy-efficiency can outpace increases in its demand. Yet, after decades of research, further improving energy-efficiency is becoming increasingly challenging, as it is already highly optimized. As a result, at some point, increases in computing demand are likely to outpace increases in its energy-efficiency, potentially by a wide margin. Such exponential growth, if left unchecked, will position computing as a substantial contributor to global carbon emissions. While prominent technology companies have recognized the problem and sought to …


The Sustainability Of Decarbonizing The Grid: A Multi-Model Decision Analysis Applied To Mexico, Rodrigo Mercado Fernandez, Erin Baker Jan 2022

The Sustainability Of Decarbonizing The Grid: A Multi-Model Decision Analysis Applied To Mexico, Rodrigo Mercado Fernandez, Erin Baker

Publications

Mexico recognizes its vulnerability to the effects of climate change, including sea level rise, increasing average temperatures, more frequent extreme weather events and changes to the hydrological cycle. Because of these concerns Mexico has a vested interest in developing sustainable strategies for mitigating climate change as it develops its electricity grid. In this study, we use a set of sustainability criteria to evaluate a number of model-derived pathways for the electricity grid aimed at meeting Mexico's climate goals. We use a multi-step approach, combining pathways from multiple large scale global models with a detailed electricity model to leverage geographic information …


Source Data For Self-Spinning Filaments For Autonomously Linked Microfibers, Dylan M. Barber, Todd S. Emrick, Gregory Grason, Alfred Crosby Jan 2022

Source Data For Self-Spinning Filaments For Autonomously Linked Microfibers, Dylan M. Barber, Todd S. Emrick, Gregory Grason, Alfred Crosby

Data and Datasets

Filamentous bundles are ubiquitous in Nature, achieving highly adaptive functions and structural integrity from assembly of diverse mesoscale supramolecular elements. Engineering routes to synthetic, topologically integrated analogs demands precisely coordinated control of multiple filaments’ shapes and positions, a major challenge when performed without complex machinery or labor-intensive processing. Here, we demonstrate a photocreasing design that encodes local curvature and twist into mesoscale polymer filaments, enabling their programmed transformation into target 3-dimensional geometries. Importantly, patterned photocreasing of filament arrays drives autonomous spinning to form linked filament bundles that are highly entangled and structurally robust. In individual filaments, photocreases unlock paths 16 …