Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Phosphorus-Containing Zeolites For Biofuel Production, Jason Gulbinski Apr 2023

Phosphorus-Containing Zeolites For Biofuel Production, Jason Gulbinski

Doctoral Dissertations

Fossil fuel consumption increases 2% a year due to transportation fuels and specialty chemicals for plastics and synthetic fibers such as p-xylene, a monomer of polyethylene terephthalate. p-Xylene demand was over 50 million tons in 2021 and will increase by 5% a year through 2026. Therefore, sustainable p-xylene production is desired. p-Xylene is produced renewably through Diels-Alder cycloaddition of biomassderived 2,5-dimethylfuran (DMF) with ethylene from bio-ethanol and dehydration over an acid catalyst. Industrial aluminosilicate zeolite catalysts achieve a selectivity of 75%, with loss to side products and coking. A new class of catalysts, phosphoric acid-containing aluminum-free zeolites, P-zeosils, like dealuminated …


Synthesis Of Zeolites With Controlled Defects By Understanding The Role Of Charge Balance In Zeolite Crystallization, Song Luo Feb 2023

Synthesis Of Zeolites With Controlled Defects By Understanding The Role Of Charge Balance In Zeolite Crystallization, Song Luo

Doctoral Dissertations

Zeolites are well-defined and ordered microporous crystalline materials constructed by the continuous linkage of corner sharing TO4 tetrahedra (taking T atoms (e.g., Si or Al) as the tetrahedral center). Due to the structural and compositional diversities and superior hydrothermal stability, zeolites have been broadly utilized to many industrial fields, including gas separation and catalysis heterogeneous catalysis. However, understanding zeolite crystallization mechanisms remains a tantalizing challenge, which causes challenges in tailoring this material for advanced applications. Raman spectroscopy has emerged as a powerful tool for probing medium-range (0.35 - 1 nm) structures. Since this scale is consistent with the micropore size …


Spectroscopic Investigations Of Zeolite-Catalyzed Carbenium Ion Chemistry, Eric David Hernandez Sep 2021

Spectroscopic Investigations Of Zeolite-Catalyzed Carbenium Ion Chemistry, Eric David Hernandez

Doctoral Dissertations

The catalytic conversion of methanol to olefins on zeolites is an industrially important process, yet the mechanistic details remain unresolved. Enylic cations (unsaturated carbenium ions) are active intermediates in the production of olefins and aromatics. However, these long-lived species are also precursors to carbonaceous deposits, the accumulation of which is responsible for catalyst deactivation. The aim of this work is to develop a mechanistic understanding that will ultimately allow steering the surface chemistry toward active intermediates. An in situ spectroscopic approach is applied to determine the nature of the relevant surface species and to track their transformations. The UV–vis and …


Study Of The Self-Assembly Process Of Microporous Materials Using Molecular Modeling, Mohammad Navaid Khan Nov 2016

Study Of The Self-Assembly Process Of Microporous Materials Using Molecular Modeling, Mohammad Navaid Khan

Doctoral Dissertations

Zeolites are an important class of materials in modern technology with applications in catalysis, separations, biosensing and microelectronics. There are over 200 different zeolite frameworks reported in literature, but only a handful have been used commercially. Understanding their self-assembly process would assist in the fabrication of new zeolites through the control of their pore size/shape, and surface area for advanced applications. With our research we aim to elucidate aspects of zeolite formation using molecular simulations. We have extended the lattice model of silica tetrahedra developed by Jin et al. [L. Jin, S. M. Auerbach and P. A. Monson J. Chem. …


Modeling The Self-Assembly Of Ordered Nanoporous Materials, Szu-Chia Chien Nov 2015

Modeling The Self-Assembly Of Ordered Nanoporous Materials, Szu-Chia Chien

Doctoral Dissertations

Porous materials are of great importance in many fields due to their wide applications. An ongoing theme in this area is the tailoring of materials for specific applications. With a better understanding of the formation mechanisms, tailoring and controlling the pore structure may be achieved. The objective of this research is acquiring further understanding of the fundamental physics that govern the formation of these materials using molecular simulations. We are aiming to unravel the assembly process of silica porous materials using a semi-rigid silica tetrahedral model. This model together with reaction ensemble Monte Carlo simulations allows us to study the …


Transport Limitations In Zeolites And Biomass Pyrolysis, Andrew Robert Teixeira Mar 2015

Transport Limitations In Zeolites And Biomass Pyrolysis, Andrew Robert Teixeira

Doctoral Dissertations

Biomass pyrolysis has been widely explored for its potential to generate a sustainable chemical source capable of producing synthetic fuels and chemicals. Lignocellulosic biomass is the carbon rich, inedible fraction of wood that is comprised of long oxygenated biopolymers, primarily cellulose, hemicellulose and the highly aromatic lignin. High temperature thermal conversion of biomass to bio-oil (pyrolysis oil) occurs on the order of milliseconds and converts long chain biopolymers to a carbon-rich liquid crude. The chemistry of biomass pyrolysis is greatly complicated by significant heat and mass transport challenges. The complex fluid dynamics of the reactive liquid intermediate are examined in …


Microwave Reactor Engineering Of Zeolites Synthesis, Murad Gharibeh Feb 2009

Microwave Reactor Engineering Of Zeolites Synthesis, Murad Gharibeh

Doctoral Dissertations 1896 - February 2014

Microwave chemistry has expanded over the last two decades due to the enhanced reaction rates achieved for many processes, including organic synthesis, inorganic synthesis and polymerization. Significant time and energy saving can be realized using microwave chemistry, which is important both commercially and for the environment.

One of the most exciting and commercially/technologically significant areas where microwave energy has been demonstrated to influence the kinetics and selectivity is in the synthesis of nanoporous materials, such as zeolites. New nanoporous materials can be created, and the times for their syntheses can be significantly reduced, involving using less energy. By reducing the …