Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh Apr 2023

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh

Doctoral Dissertations

Amphiphilic block copolymers have gained a broad research interest attributed to their self-assembly properties over a range of pH, temperature, and ionic strength. Polyzwitterions have attracted special attention due to their hydrophilicity, charge sensitivity and coulombic attraction of the opposite charges over a range of environments making them a popular material of study in the field of stimuli responsive systems, for example in self-healing hydrogels, and water transport membranes. Combining the stimuli responsiveness and higher hydrophilicity of zwitterionic polymers with self-assembly behavior of amphiphilic block copolymers created an interest to study the effect of composition and identity of the zwitterionic …


Synthesis, Characterization And Application Of Block Copolymer And Nanoparticle Composites, Yue Gai Jul 2017

Synthesis, Characterization And Application Of Block Copolymer And Nanoparticle Composites, Yue Gai

Doctoral Dissertations

The “bottom-up” fabrication of functional hybrid material can be achieved by using directed self-assembly of functional nanoparticles (NP) and block copolymers (BCP) as templates. The versatile nanostructures of BCP provide possibilities to precisely control NPs spatial distribution and the resulting hybrid materials exhibit enhanced electrical, mechanical and optical functionalities. Three main topics related to BCP/NP composites are discussed in this dissertation: I) the spatial distribution of large NP in linear BCP; II) the morphology control of BCP templates with new architectures; and III) the magneto-optical properties of hybrid material using magnetic NPs. For well-ordered BCP/NP composite, the ratio of NP …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous Nov 2015

Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous

Doctoral Dissertations

An optimal nanoscale phase separation between the donor (generally, a conjugated polymer) and the acceptor (generally, a fullerene derivative) materials is one of the major requirements for obtaining high efficiency organic photovoltaic (OPV) device. Recent methods of controlling such nanostructure morphology in a bulkheterojunction (BHJ) OPV device involve addition of a small amount of solvent additive to the donor and acceptor solutions. The idea is to retain the acceptor materials into the solution for a longer period of time during the film solidification process, thus allowing the donor material to crystallize earlier. The ultimate morphology resulting from the solvent casting …


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Nov 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction. Hydrophilic MNPs were shown to drive the self-assembly of BCPs …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …


Solution Assembly Of Conjugated Polymers, Felicia Bokel May 2013

Solution Assembly Of Conjugated Polymers, Felicia Bokel

Open Access Dissertations

This dissertation focuses on the solution-state polymer assembly of conjugated polymers with specific attention to nano- and molecular-scale morphology. Understanding how to control these structures holds potential for applications in polymer-based electronics. Optimization of conjugated polymer morphology was performed with three objectives: 1) segregation of donor and acceptor materials on the nanometer length-scale, 2) achieving molecular-scale ordering in terms of crystallinity within distinct domains, and 3) maximizing the number and quality of well-defined donor/acceptor interfaces.

Chapter 1 introduces the development of a mixed solvent method to create crystalline poly(3-hexyl thiophene) (P3HT) fibrils in solution. Chapter 2 describes fibril purification and …


Effect Of Building Morphology On Energy And Structural Performance Of High-Rise Office Buildings, Mohamed Krem May 2012

Effect Of Building Morphology On Energy And Structural Performance Of High-Rise Office Buildings, Mohamed Krem

Open Access Dissertations

The civil engineering and architectural communities are highly focused, these days, on designing buildings that maximize utilization of energy available from natural resources. This dissertation presents a quantitative study of the effect of high-rise office building morphology on energy and structural performances for the major climates. The parameters of the building morphologies are varied - the building footprint shape, the placement of the structural core/walls, and the building orientation. The energy analysis is performed using Autodesk Ecotect Analysis 2011; while using SAP2000 for the structure analysis and design. The key observations are: 1) the building morphology has a significant effect …


Controlling Morphology In Swelling-Induced Wrinkled Surfaces, Derek Breid Feb 2012

Controlling Morphology In Swelling-Induced Wrinkled Surfaces, Derek Breid

Open Access Dissertations

Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more …


Microwave Reactor Engineering Of Zeolites Synthesis, Murad Gharibeh Feb 2009

Microwave Reactor Engineering Of Zeolites Synthesis, Murad Gharibeh

Doctoral Dissertations 1896 - February 2014

Microwave chemistry has expanded over the last two decades due to the enhanced reaction rates achieved for many processes, including organic synthesis, inorganic synthesis and polymerization. Significant time and energy saving can be realized using microwave chemistry, which is important both commercially and for the environment.

One of the most exciting and commercially/technologically significant areas where microwave energy has been demonstrated to influence the kinetics and selectivity is in the synthesis of nanoporous materials, such as zeolites. New nanoporous materials can be created, and the times for their syntheses can be significantly reduced, involving using less energy. By reducing the …