Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

The Predictive Link Between Matrix And Metastasis, Lauren E. Barney, Lauren Jansen, S. R. Polio, Sualyneth Galarza, Maureen E. Lynch, Shelly Peyton Jan 2016

The Predictive Link Between Matrix And Metastasis, Lauren E. Barney, Lauren Jansen, S. R. Polio, Sualyneth Galarza, Maureen E. Lynch, Shelly Peyton

Chemical Engineering Faculty Publication Series

Cancer spread (metastasis) is responsible for 90% of cancer-related fatalities. Informing patient treatment to prevent metastasis, or kill all cancer cells in a patient's body before it becomes metastatic is extremely powerful. However, aggressive treatment for all non-metastatic patients is detrimental, both for quality of life concerns, and the risk of kidney or liver-related toxicity. Knowing when and where a patient has metastatic risk could revolutionize patient treatment and care. In this review, we attempt to summarize the key work of engineers and quantitative biologists in developing strategies and model systems to predict metastasis, with a particular focus on cell …


Complex Coacervate-Based Materials For Biomedicine, Sarah L. Perry, Whitney C. Blocher Jan 2016

Complex Coacervate-Based Materials For Biomedicine, Sarah L. Perry, Whitney C. Blocher

Chemical Engineering Faculty Publication Series

There has been increasing interest in complex coacervates for deriving and trans- porting biomaterials. Complex coacervates are a dense, polyelectrolyte-rich liq- uid that results from the electrostatic complexation of oppositely charged macroions. Coacervates have long been used as a strategy for encapsulation, par- ticularly in food and personal care products. More recent efforts have focused on the utility of this class of materials for the encapsulation of small molecules, pro- teins, RNA, DNA, and other biomaterials for applications ranging from sensing to biomedicine. Furthermore, coacervate-related materials have found utility in other areas of biomedicine, including cartilage mimics, tissue culture scaffolds, …


Linear Viscoelasticity Of Complex Coacervates, Yalin Liu, H. Henning Winter, Sarah L. Perry Jan 2016

Linear Viscoelasticity Of Complex Coacervates, Yalin Liu, H. Henning Winter, Sarah L. Perry

Chemical Engineering Faculty Publication Series

Rheology is a powerful method for materials characterization that can provide detailed information about the self-assembly, structure, and intermolecular interactions present in a material. Here, we review the use of linear viscoelastic measurements for the rheological characterization of complex coacervate-based materials. Complex coacervation is an electrostatically and entropically-driven associative liquid-liquid phase separation phenomenon that can result in the formation of bulk liquid phases, or the self-assembly of hierarchical, microphase separated materials. We discuss the need to link thermodynamic studies of coacervation phase behavior with characterization of material dynamics, and provide parallel examples of how parameters such as charge stoichiometry, ionic …


Graphene-Based Microfluidics For Serial Crystallography, Shuo Sui, Yuxi Wang, Kristopher W. Kolewe, Vukica Srajer, Robert Henning, Jessica D. Schiffman, Christos Dimitrakopoulos, Sarah L. Perry Jan 2016

Graphene-Based Microfluidics For Serial Crystallography, Shuo Sui, Yuxi Wang, Kristopher W. Kolewe, Vukica Srajer, Robert Henning, Jessica D. Schiffman, Christos Dimitrakopoulos, Sarah L. Perry

Chemical Engineering Faculty Publication Series

Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We …


Metabolic Modeling Of A Chronic Wound Biofilm Consortium Predicts Spatial Partitioning Of Bacterial Species, Poonam Phalak, Jin Chen, Ross P. Carlson, Michael A. Henson Jan 2016

Metabolic Modeling Of A Chronic Wound Biofilm Consortium Predicts Spatial Partitioning Of Bacterial Species, Poonam Phalak, Jin Chen, Ross P. Carlson, Michael A. Henson

Chemical Engineering Faculty Publication Series

Background

Chronic wounds are often colonized by consortia comprised of different bacterial species growing as biofilms on a complex mixture of wound exudate. Bacteria growing in biofilms exhibit phenotypes distinct from planktonic growth, often rendering the application of antibacterial compounds ineffective. Computational modeling represents a complementary tool to experimentation for generating fundamental knowledge and developing more effective treatment strategies for chronic wound biofilm consortia.

Results

We developed spatiotemporal models to investigate the multispecies metabolism of a biofilm consortium comprised of two common chronic wound isolates: the aerobe Pseudomonas aeruginosa and the facultative anaerobe Staphylococcus aureus. By combining genome-scale metabolic …


Polyelectrolyte-Functionalized Nanofiber Mats Control The Collection And Inactivation Of Escherichia Coli, Katrina A. Rieger, Michael Porter, Jessica D. Schiffman Jan 2016

Polyelectrolyte-Functionalized Nanofiber Mats Control The Collection And Inactivation Of Escherichia Coli, Katrina A. Rieger, Michael Porter, Jessica D. Schiffman

Chemical Engineering Faculty Publication Series

Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and …