Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 52

Full-Text Articles in Engineering

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe Nov 2023

Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe

Masters Theses

Polymer coatings offer a wide range of benefits across various industries, playing a crucial role in product protection and extension of shelf life. However, formulating them can be a non-trivial task given the multitude of variables and factors involved in the production process, rendering it a complex, high-dimensional problem. To tackle this problem, machine learning (ML) has emerged as a promising tool, showing considerable potential in enhancing various polymer and chemistry-based applications, particularly those dealing with high dimensional complexities.

Our research aims to develop a physics-guided ML approach to facilitate the formulations of polymer coatings. As the first step, this …


Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil Apr 2023

Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil

Doctoral Dissertations

Polymer networks are one of the most versatile and highly studied material class that revolutionized many aspects of life. Connecting the final network properties to the molecular parameters of its building blocks remains a major research thrust. Recent advances in network synthesis techniques allowed for accurate predictions of elastic modulus in model networks. Tew Group has developed highly efficient, thiol-norbornene networks with controllable mechanical properties. Chapter 2 focuses on modifying the gel fracture energy predicted by Lake-Thomas theory by accounting for loop defects. This study allowed for a priori estimates of gel fracture energy by combining theory, experiments, and simulations. …


Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh Apr 2023

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh

Doctoral Dissertations

Amphiphilic block copolymers have gained a broad research interest attributed to their self-assembly properties over a range of pH, temperature, and ionic strength. Polyzwitterions have attracted special attention due to their hydrophilicity, charge sensitivity and coulombic attraction of the opposite charges over a range of environments making them a popular material of study in the field of stimuli responsive systems, for example in self-healing hydrogels, and water transport membranes. Combining the stimuli responsiveness and higher hydrophilicity of zwitterionic polymers with self-assembly behavior of amphiphilic block copolymers created an interest to study the effect of composition and identity of the zwitterionic …


Vapor Deposition Of Self-Wrinkling Polymer Films, Robert N. Enright Apr 2023

Vapor Deposition Of Self-Wrinkling Polymer Films, Robert N. Enright

Doctoral Dissertations

Initiated chemical vapor deposition is used to grow polymer films on substrates of various three-dimensional shapes which exhibit wrinkling during film growth, termed self-wrinkling. Self-wrinkling avoids separate film growth and compression steps and more-closely mimics processes observed in nature. The self-wrinkling process is elucidated on flat elastic substrates, revealing control over the amount of compressive stress by changing deposition conditions. Next, a study of films grown on liquid substrates with interface profiles that either resemble cylinders or contain repeating concave cones, saddles, and bowls affirms the principle that the wrinkle roundness increases with interface curvature. The selection of high versus …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Chromatographic Dynamic Chemisorption, Shreya Thakkar Jun 2022

Chromatographic Dynamic Chemisorption, Shreya Thakkar

Masters Theses

Reaction rates of catalytic cycles over supported metal catalysts are normalized by the exposed metal atoms on the catalyst surface, reported as site time yields which provide a rigorous standard to compare distinct metal surfaces. Defined as the fraction of exposed metal surface atoms to the total number of metal atoms, it is important to measure the dispersion of supported metal catalysts to report standardized rates for kinetic investigations. Multiple characterization techniques such as electron microscopy, spectroscopy and chemisorption are exploited for catalyst dispersion measurements. While effective, electron microscopy and spectroscopy are not readily accessible due to cost and maintenance …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …


Designing Nonflammable Polymers And Blends Containing Deoxybenzoin Derivatives, Elizabeth Stubbs Feb 2022

Designing Nonflammable Polymers And Blends Containing Deoxybenzoin Derivatives, Elizabeth Stubbs

Doctoral Dissertations

The importance of synthetic polymers in everyday life continues to grow, owing to their societal importance for improving our standard-of-living and enabling advances spanning medicine, electronics, construction materials, transportation. While niche applications occupy a small fraction of the overall volume of polymers produced, large scale applications tend to employ lower cost materials, such as polyethylene, polypropylene, and polystyrene. In addition to environmental considerations connected to these polymerized hydrocarbons, produced in excess of 380 million tons per year worldwide, their inherent flammability creates additional requirements associated with their manufacturing and use. Societal benefits of such polymers are extensive, and thus, there …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu Jul 2021

Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu

Doctoral Dissertations

Inspired by nature, this research focuses on designing multifunctional renewable nanocomposites with high toughness and stimuli-responsiveness. In recent years, cellulose nanocrystals (CNCs) have been explored due to their abundance, renewable resource, and unique mechanical strength and structural coloration. CNCs naturally self-assemble into the helicoidal (Bouligand) structure that effectively endure high impacts but is brittle without an attendant soft phase. A thermoresponsive polymer, poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), was incorporated into CNCs via evaporation-induced self-assembly to improve toughness of the resulting nanocomposites and to study responses in polymer dynamics under varying temperature and humidity conditions. To study microscopic …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …


Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng Apr 2021

Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng

Doctoral Dissertations

Electrospun fibers are high-surface-area materials widely used in applications ranging from batteries to wound dressings. Typically, an electrospinning precursor solution is prepared by dissolving a high-molecular-weight polymer in an organic solvent to form a sufficiently entangled solution. Our approach bypasses the requirement for entanglements and completely avoids toxic chemicals by focusing on using an aqueous complex coacervates solution. Coacervates are a dense, polymer-rich liquid phase resulting from the associative electrostatic complexation of oppositely charged macroions. We were the first to demonstrate that liquid complex coacervates could be successfully electrospun into polyelectrolyte complex (PEC) fibers. A canonical coacervate system was formed …


Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta Dec 2020

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta

Doctoral Dissertations

Biologic drugs have gained enormous research attention in recent years as reflected by the development of multiple candidates to the clinical pipelines and an increased percentage of FDA approval. This is reasoned by the fact that biologics have been proven to deliver more predictive and promising benefits for many hard-to-cure diseases by ‘drugging the undruggable’ targets. However, the challenges associated with biologic drug development are multi-fold, viz, poor encapsulation efficacy, systemic instability, low cellular internalization and endosomal escape capability. Thus, it is essential to develop new molecular strategies that can not only address the associated drug delivery challenges, but also …


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Molecular Design Of Organic Semiconductors For Interfacial And Emissive Material Applications, Marcus David Cole Mar 2020

Molecular Design Of Organic Semiconductors For Interfacial And Emissive Material Applications, Marcus David Cole

Doctoral Dissertations

This dissertation describes the synthesis and characterization of functional optoelectronically active materials. Synthetic techniques were used to prepare polymers containing perylene diimide (PDI) or tetraphenylethylene (TPE) moieties in the polymer backbone. PDI-based structures were prepared with embedded cationic or zwitterionic moieties intended to tailor organic/inorganic interfaces in thin film photovoltaic devices. The aggregation-induced emission (AIE)-active TPE polymers were synthesized to study how AIE properties evolve in π-conjugated polymers. The syntheses discussed here focused on modulation of molecular architecture to give rise to materials with tailored optoelectronic properties. Chapter 1 provides a brief overview of the field of organic electronics and …


Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li Oct 2019

Top-Down And Bottom-Up Fabrication Of Key Components In Miniature Energy Storage Devices, Wenhao Li

Doctoral Dissertations

The advent of miniature electronic devices demands power sources of commensurate form factors. This spurs the research of micro energy storage devices, e.g., 3D microbatteries. A 3D microbattery contains nonplanar microelectrodes with high aspect ratio and high surface area, separated by a nanoscale electrolyte. The device takes up a total volume as small as 10 mm3, allowing it to serve on a chip and to provide power in-situ. The marriage of nanotechnology and electrochemical energy storage makes microbattery research a fascinating field with both scientific excitement and application prospect. However, successful fabrication of well-functioned key components …


Designing Ion-Containing Polymers With Controlled Structure And Dynamics, Joshua Enokida Oct 2019

Designing Ion-Containing Polymers With Controlled Structure And Dynamics, Joshua Enokida

Doctoral Dissertations

Ion-containing polymers are a unique class of materials for which strong electrostatic interactions dictate physical properties. By altering molecular parameters, such as the backbone chemical structure, the ion content, and the ion-pair identity, the structure and dynamics of these polymers can be altered. Further investigation of the molecular parameters that govern their structure-property relationships is critical for the future development of these polymeric materials. Particularly, the incorporation of ammonium-based counterions into these polymers offers a facile method to tune their electrostatic interactions and hydrophobicity. Applying this concept, a bulky dimethyloctylammonium (DMOA) counterion was used to modify the organic solubility of …


Double-Network Materials Via Frontal Polymerization & Supercritical Co2 Processing, Matthew Joseph Lampe Jul 2019

Double-Network Materials Via Frontal Polymerization & Supercritical Co2 Processing, Matthew Joseph Lampe

Doctoral Dissertations

This dissertation presents work focused on producing materials in non-equilibrium states by taking advantage of novel processing techniques. First, epoxy-based resins which can undergo radically promoted, cationic, thermal, frontal polymerization are investigated for their potential use as adhesives. These resins are found to be capable of sustaining propagating polymerization fronts between several different substrate materials, resulting in high levels of adhesion in some cases. In addition, a similar frontal resin was developed that can undergo sequential gelation and frontal polymerization. The gels are formed by radically crosslinking acrylate monomers within the epoxy resin. These gels can then be manipulated, and …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


Surface Functionalization Of Fabrics And Threads For Smart Textiles, Morgan Baima Oct 2018

Surface Functionalization Of Fabrics And Threads For Smart Textiles, Morgan Baima

Doctoral Dissertations

The future of electronics is moving toward wearable devices and therefore requires a shift away from hard, inflexible materials towards fibers, threads, and fabrics that conform to the shape of the body. Therefore new methods for incorporating textiles as electronic components are needed to replace conventional processing techniques used with smooth, flat substrates like glass, silicon, and many polymers. Toward this end, this work investigates different methods that can be used to tune textile surfaces for electronic functionality, including weaving, solution grafting, and initiated chemical vapor deposition (iCVD). While all of these methods were used to make triboelectrically-active textiles, iCVD …


Polymeric Peptide Mimics For Protein Delivery, Coralie Backlund Jul 2018

Polymeric Peptide Mimics For Protein Delivery, Coralie Backlund

Doctoral Dissertations

The plasma membrane is a major obstacle in the development and use of biomacromolecules for intracellular applications. Consequently, proteins with intracellular targets represent an enormous, yet under studied avenue for therapeutics. Extended research has aimed at facilitating intracellular delivery of exogenous proteins using protein transduction domains (PTDs), which allow transport of bioactive molecules into cells. Synthetic polymers, inspired by PTDs, provide a well-controlled platform to vary molecular architecture for structure activity relationship studies. Specifically, this thesis focuses on the use of ring-opening metathesis, a facile and efficient polymerization technique, through which we can vary structural parameters to optimize delivery of …


Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou Nov 2017

Aliovalent Dopants In Zno Nanocrystals: Synthesis To Electronic Structure, Dongming Zhou

Doctoral Dissertations

Semiconductor nanocrystal doping has stimulated broad interest for many applications including solar energy conversion, nanospintronics, and phosphors or optical labels. The study of the chemistry and physics of doped colloidal semiconductor nanocrystals has been dominated in the literature by isovalent dopants such as Mn2+ and Co2+ ions in II-VI semiconductors, in which the dopant oxidation state is the same as the cation ions. Until recently, aliovalent dopants has received much attention due to the plasmonic properties. Aliovalent is when the oxidation states of the dopant in the lattice differs from the cation ions. In the plasmonic semiconductor nanocrystals, …


Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi Nov 2017

Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi

Doctoral Dissertations

Fuel cells have been demonstrated to be promising power generation devices to address the current global energy and environmental challenges. One of the many barriers to commercialization is the cost of precious catalysts needed to achieve sufficient power output. Platinum-based materials play an important role as electrocatalysts in energy conversion technologies. In order to improve catalytic efficiency and facilitate rational design and development of new catalysts, structure–function relationships that underpin catalytic activity must be understood at a fundamental level. First, we present a systematic analysis of CO adsorption on Pt nanoclusters in the 0.2-1.5 nm size range with the aim …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout Nov 2017

Protein-Nanoparticle Co-Engineering: Self-Assembly, Intracellular Protein Delivery, And Crispr/Cas9-Based Gene Editing, Rubul Mout

Doctoral Dissertations

Direct cytoplasmic delivery of gene editing nucleases such CRISPR/Cas9 systems and therapeutic proteins provides enormous opportunities in curing human genetic diseases, and assist research in basic cell biology. One approach to attain such a goal is through engineering nanotechnological tools to mimic naturally existing intra- and extracellular protein delivery/transport systems. Nature builds transport systems for proteins and other biomolecules through evolution-derived sophisticated molecular engineering. Inspired by such natural assemblies, I employed molecular engineering approaches to fabricate self-assembled nanostructures to use as intracellular protein delivery tools. Briefly, proteins and gold nanoparticles were co-engineered to carry complementary electrostatic recognition elements. When these …


Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites And Interfaces, Daniel H. Flagg Nov 2017

Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites And Interfaces, Daniel H. Flagg

Doctoral Dissertations

Five research projects described. First, a reproducible, lab-scale synthesis of MQ silicone copolymers is presented. MQ copolymers are commercially important materials that have been ignored by the academic community. One possible reason for this is the difficulty of controlling and reproducing the preparative copolymerizations that have been reported. A reproducible method for lab-scale preparation was developed that controls molecular weight by splitting the copolymerization into the discrete steps of sol growth from silicate precursor and end-capping by trimethylsiloxy groups. Characterization of MQ products implicates that they are composed of highly condensed, polycyclic structures. The MQ copolymers prepared in the first …