Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Systematic Comparison Of Two Axial Flux Pm Machine Topologies: Yokeless And Segmented Armature Versus Single Sided, Narges Taran, Greg Heins, Vandana Rallabandi, Dean Patterson, Dan M. Ionel Oct 2019

Systematic Comparison Of Two Axial Flux Pm Machine Topologies: Yokeless And Segmented Armature Versus Single Sided, Narges Taran, Greg Heins, Vandana Rallabandi, Dean Patterson, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper systematically compares two axial flux permanent magnet (AFPM) machines designed for a university student racing car application: a double-rotor single-stator yokeless and segmented armature (YASA) structure, and a single- stator single-rotor configuration. Both machines are optimized for minimum loss and active weight using 3D finite element analysis and the highest performing candidate designs are compared in more detail. The studies indicate that the benefits offered by the YASA configuration over the single-stator single-rotor machine are achieved only for specific designs that are heavier. For the design space with lower mass, albeit with increased losses, the Pareto front designs …


Optimum Design Of Axial Flux Pm Machines Based On Electromagnetic 3d Fea, Narges Taran Jan 2019

Optimum Design Of Axial Flux Pm Machines Based On Electromagnetic 3d Fea, Narges Taran

Theses and Dissertations--Electrical and Computer Engineering

Axial flux permanent magnet (AFPM) machines have recently attracted significant attention due to several reasons, such as their specific form factor, potentially higher torque density and lower losses, feasibility of increasing the number of poles, and facilitating innovative machine structures for emerging applications. One such machine design, which has promising, high efficiency particularly at higher speeds, is of the coreless AFPM type and has been studied in the dissertation together with more conventional AFPM topologies that employ a ferromagnetic core.

A challenge in designing coreless AFPM machines is estimating the eddy current losses. This work proposes a new hybrid analytical …