Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

An Organic Mixed Ion-Electron Conductor For Power Electronics, Abdellah Malti, Jesper Edberg, Hjalmar Granberg, Zia Ullah Khan, Jens W. Andreasen, Xianjie Liu, Dan Zhao, Hao Zhang, Yulong Yao, Joseph W. Brill, Isak Engquist, Mats Fahlman, Lars Wågberg, Xavier Crispin, Magnus Berggren Dec 2015

An Organic Mixed Ion-Electron Conductor For Power Electronics, Abdellah Malti, Jesper Edberg, Hjalmar Granberg, Zia Ullah Khan, Jens W. Andreasen, Xianjie Liu, Dan Zhao, Hao Zhang, Yulong Yao, Joseph W. Brill, Isak Engquist, Mats Fahlman, Lars Wågberg, Xavier Crispin, Magnus Berggren

Physics and Astronomy Faculty Publications

A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.


Interfacial Engineering Of Biomass Hydrolysis By Cellulase Enzymes And Mechanistic Modeling Of Hydrolysis Of Cellulose Substrates, Ravinder Kumar Garlapalli Jan 2015

Interfacial Engineering Of Biomass Hydrolysis By Cellulase Enzymes And Mechanistic Modeling Of Hydrolysis Of Cellulose Substrates, Ravinder Kumar Garlapalli

Theses and Dissertations--Chemical and Materials Engineering

Lignocellulosic biomass is a sustainable and renewable energy resource that can be converted to fuels and other commodity chemicals, but this conversion is currently limited by its recalcitrance to enzymatic degradation. Because of this recalcitrance, the major challenges in the commercialization of enzymatic hydrolysis processes are the relatively low hydrolysis rates, limited cellulose conversion under some conditions, and high cost of enzymes.

Enzymatic hydrolysis is influenced by the structure of the biomass after pretreatment and the mode of enzyme action, but has also been shown to be enhanced by surfactant additives. The objective of this work was to elucidate the …