Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Biomedical Engineering Faculty Publications

Forearm

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Muscle Activity During Maximal Isometric Forearm Rotation Using A Power Grip, Joseph Scott Bader, Michael R. Boland, Desney Greybe, Arthur J. Nitz, Timothy L. Uhl, David A. Pienkowski Feb 2018

Muscle Activity During Maximal Isometric Forearm Rotation Using A Power Grip, Joseph Scott Bader, Michael R. Boland, Desney Greybe, Arthur J. Nitz, Timothy L. Uhl, David A. Pienkowski

Biomedical Engineering Faculty Publications

This study aimed to provide quantitative activation data for muscles of the forearm during pronation and supination while using a power grip. Electromyographic data was collected from 15 forearm muscles in 11 subjects while they performed maximal isometric pronating and supinating efforts in nine positions of forearm rotation. Biceps brachii was the only muscle with substantial activation in only one effort direction. It was significantly more active when supinating (µ = 52.1%, SD = 17.5%) than pronating (µ = 5.1%, SD = 4.8%, p < .001). All other muscles showed considerable muscle activity during both pronation and supination. Brachioradialis, flexor carpi radialis, palmaris longus, pronator quadratus and pronator teres were significantly more active when pronating the forearm. Abductor pollicis longus and biceps brachii were significantly more active when supinating. This data highlights the importance of including muscles additional to the primary forearm rotators in a biomechanical analysis of forearm rotation. Doing so will further our understanding of forearm function and lead to the improved treatment of forearm fractures, trauma-induced muscle dysfunction and joint replacements.


Simultaneous Measurement Of Deep Tissue Blood Flow And Oxygenation Using Noncontact Diffuse Correlation Spectroscopy Flow-Oximeter, Ting Li, Yu Lin, Yu Shang, Lian He, Chong Huang, Margaret M. Szabunio, Guoqiang Yu Feb 2013

Simultaneous Measurement Of Deep Tissue Blood Flow And Oxygenation Using Noncontact Diffuse Correlation Spectroscopy Flow-Oximeter, Ting Li, Yu Lin, Yu Shang, Lian He, Chong Huang, Margaret M. Szabunio, Guoqiang Yu

Biomedical Engineering Faculty Publications

We report a novel noncontact diffuse correlation spectroscopy flow-oximeter for simultaneous quantification of relative changes in tissue blood flow (rBF) and oxygenation (Δ[oxygenation]). The noncontact probe was compared against a contact probe in tissue-like phantoms and forearm muscles (n = 10), and the dynamic trends in both rBF and Δ[oxygenation] were found to be highly correlated. However, the magnitudes of Δ[oxygenation] measured by the two probes were significantly different. Monte Carlo simulations and phantom experiments revealed that the arm curvature resulted in a significant underestimation (~-20%) for the noncontact measurements in Δ[ …