Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Central Florida

Aerospace Engineering

Fluid mechanics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne Jan 2021

Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne

Honors Undergraduate Theses

The cycling industry has long relied on expensive wind tunnel testing when designing aerodynamic products, particularly in the context of wheels which account for 10 to 15 percent of a cyclist's total aerodynamic drag. With the recent advent of Computational Fluid Dynamics (CFD), the industry now has an economical tool to supplement the wheel design process; however, the complex nature of rotating spoked wheels requires high resolution meshes to model at acceptable fidelity. This research investigates an alternative CFD method that lowers the computational cost of modeling aerodynamic bicycle wheels by modeling spokes using Blade Element Method (BEM). Two CFD …


Development Of A Computationally Inexpensive Method Of Simulating Primary Droplet Breakup, Brendon A. Cavainolo Jan 2020

Development Of A Computationally Inexpensive Method Of Simulating Primary Droplet Breakup, Brendon A. Cavainolo

Honors Undergraduate Theses

Liquid droplet impingement on aircraft can be problematic as it leads to ice accretion. There have been many incidents of aircraft disasters involving ice accretion, such as American Eagle Flight 4184. Understanding liquid droplet impingement is critical in designing aircraft that can mitigate the damages caused by icing. However, the FAA's regulations are only specified for "Appendix C" droplets; thus, aircraft designs may not be safe when accounting for droplets such as Supercooled Large Droplets. The assumptions of many models, such as the Taylor-Analogy Breakup (TAB) model, are no longer accurate for Supercooled Large Droplets, and the physics of those …