Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Creasing Of Polyimide Thin Film For Use In Solar Sails, Andrew Allen Dec 2021

Creasing Of Polyimide Thin Film For Use In Solar Sails, Andrew Allen

Electronic Theses and Dissertations, 2020-

Polymer thin membranes are used in a variety of deployable structures that require large areas and compact stowage. Packaging membrane structures often involves creasing the membrane along predefined fold lines to enforce the desired kinematics under folding action. Inducing permanent deformation by folding to a high curvature is a common method to create creases, particularly in the design of solar sails. The distinct mechanical characteristics at the crease regions have a profound effect on the subsequent deployment and tensioning of the membrane structures. The mechanical and geometric properties at the crease are related to the crease formation process, but the …


Investigation Into Wedge Turbulator Effects In High Aspect Ratio Cooling Channels, Daniel Garcia Dec 2021

Investigation Into Wedge Turbulator Effects In High Aspect Ratio Cooling Channels, Daniel Garcia

Electronic Theses and Dissertations, 2020-

With reusability being a novel design parameter for liquid rocket engines (LRE), the need to lower internal wall temperatures for an increased engine longevity is a desired outcome. One of the mechanisms that has been effectively implemented is the use of high aspect ratio cooling channels (HARCC) to promote fin-like effects from internal cooling channel sidewalls. In the gas turbine industry, the use of wedge turbulators has gained recognition for its heat augmentation properties with relatively low pressure drop penalty. In an ideal case, LRE's could adopt the wedge turbulator cooling technique to enhance the benefits of HARCC with minimal …


On Mode Transition Phenomenon And Operating Conditions In Rotating Detonation Rocket Engines, Taha Rezzag-Lebza Dec 2021

On Mode Transition Phenomenon And Operating Conditions In Rotating Detonation Rocket Engines, Taha Rezzag-Lebza

Electronic Theses and Dissertations, 2020-

The work presented herein consist of first studying the instantaneous properties of the detonation waves in a rotating detonation rocket engine by tracking each individual wave and recording its position, velocity, and peak intensity as it travels around the annulus. Results for a steady portion of a test performed on a rotating detonation rocket engine show that the wave properties exhibit oscillatory behavior. Results obtained from the rotating detonation rocket engine show that the properties are highly dependent on the azimuthal position. In an attempt to understanding the cause of such a behavior, similar investigations were performed on an air-breathing …


Optimization Of A Wing Supporting A Coaxial Rotor For Multiple Flight Conditions, Tadd Yeager Jan 2021

Optimization Of A Wing Supporting A Coaxial Rotor For Multiple Flight Conditions, Tadd Yeager

Electronic Theses and Dissertations, 2020-

Rotor-powered drones continue to grow in popularity in private and government sectors. The use of these drones in challenging environments and in high stakes applications calls for a certain level of robustness and redundancy. Often, these drones are equipped with sets of paired coaxial rotors, which not only improve the performance of the vehicle, but also ensure that a failure of one motor does not constitute the failure of the whole vehicle. Some applications such as extraterrestrial exploration, which use these coaxial rotors, can benefit from a wing shaped rotor arm to reduce drag and increase lift, extending mission lifetime. …


Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne Jan 2021

Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne

Honors Undergraduate Theses

The cycling industry has long relied on expensive wind tunnel testing when designing aerodynamic products, particularly in the context of wheels which account for 10 to 15 percent of a cyclist's total aerodynamic drag. With the recent advent of Computational Fluid Dynamics (CFD), the industry now has an economical tool to supplement the wheel design process; however, the complex nature of rotating spoked wheels requires high resolution meshes to model at acceptable fidelity. This research investigates an alternative CFD method that lowers the computational cost of modeling aerodynamic bicycle wheels by modeling spokes using Blade Element Method (BEM). Two CFD …


Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper Jan 2021

Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper

Honors Undergraduate Theses

The purpose of the following research is to explore molten regolith electrolysis (MRE) methodology for in-situ resource utilization (ISRU) of Highlands lunar regolith, to be explored during the initial Artemis missions. An analysis of potential commercial launch providers for MRE-equipment based on technology-readiness level (TRL), payload mass support, and $ USD/kg payload price is provided. SpaceX is ultimately proposed as a launch provider of MRE equipment following multi-factorial analysis, with the SpaceX Starship human landing system (HLS) variant proposed for supporting MRE payload. Finally, customers of regolith-derived oxygen, aluminum, and silicon are distinguished to form the business case for operating …


Simulating Ejecta Blown Off The Lunar Surface Due To Landing Spacecraft Using The Mercury N-Body Integrator, Isabel Rivera Jan 2021

Simulating Ejecta Blown Off The Lunar Surface Due To Landing Spacecraft Using The Mercury N-Body Integrator, Isabel Rivera

Electronic Theses and Dissertations, 2020-

The experiences of the Apollo lunar landings revealed the danger lunar dust can pose to surrounding hardware, outposts, and orbiting spacecraft. Future lunar missions such as the Artemis program will require more information about the trajectories of ejecta blown by landers to protect orbiting spacecraft such as the Lunar Gateway. In this paper, we simulate lunar lander ejecta trajectories using the Mercury N-body integrator. We placed cones of test particles on the Moon at the North Pole, South Pole, and Equator with various ejection speeds and angles. The results show that particles ejected at speeds near the Moon's escape velocity …


Numerical Modeling Of Shockwave Initiated Combustion Of A Hydrogen-Oxygen Mixture Within A Shock Tube, Reed Forehand Jan 2021

Numerical Modeling Of Shockwave Initiated Combustion Of A Hydrogen-Oxygen Mixture Within A Shock Tube, Reed Forehand

Electronic Theses and Dissertations, 2020-

Shock tubes are as close to an ideal reactor as most modern experiments can attain to examine chemical kinetics. As reaction temperatures drop, homogeneous combustion within a shock tube begins to exhibit inhomogeneous modes, which in a typical Hydrogen-Oxygen system are ex- pressed as deflagration to detonation transition. Experimental results of such a system in the Uni- versity of Central Florida's low-pressure shock tube have been collected through end and side-wall imaging to analyze flame structure and chemical kinetics. The purpose of this work is to con- duct a baselining of these results using both chemical and computational fluid dynamics …


Development Of Multi-Scale Characterization Techniques For Stress Corrosion Cracking Of Aerospace Alloys, Nicholas Reed Jan 2021

Development Of Multi-Scale Characterization Techniques For Stress Corrosion Cracking Of Aerospace Alloys, Nicholas Reed

Electronic Theses and Dissertations, 2020-

Corrosion presents an inherent challenge in the safe and effective use of metallic aerospace structures for extended periods of time. Progress in the fundamental understanding of corrosion initiation and propagation under stress requires a multi-scale approach that leverages experiments to develop predictive models. Although there exists a large amount of research results tracking the corrosive processes of anodic dissolution and hydrogen embrittlement, the amount of available data and modeling of the micro-scale initiation of corrosion is sparse. This work leverages a suite of characterization techniques to systematically analyze an aerospace grade aluminum alloy AA7075-T6, providing important multi-scale data for correlation …


Motor Control System For Near-Resonance High-Cycle Fatigue Testing, Samer K. Armaly Jan 2021

Motor Control System For Near-Resonance High-Cycle Fatigue Testing, Samer K. Armaly

Honors Undergraduate Theses

This research project develops a low-cost high-cycle fatigue (HCF) testing system comprised of an AC motor, variable frequency drive (VFD), eccentric cam, and feedback controller. The system acts as a forced harmonic oscillator leveraging mechanical resonance to vibrate a specimen at a frequency required to induce the testing's strain amplitudes.

This system depends highly on the material being tested. As such, the controller incorporates material characteristics. A frequency sweep measures the strain amplitude to characterize the specimen. Additionally, other measurements such as acceleration can be used as a proxy control variables for strain. A function converts the control variable to …


A Finite Difference Model For Induced Hypothermia During Shock, Dylan S. Lyon Jan 2021

A Finite Difference Model For Induced Hypothermia During Shock, Dylan S. Lyon

Honors Undergraduate Theses

The modified Fiala model from Westin was implemented with conditions for circulatory shock and hypothermia. The purpose is to model Emergency Preservation and Resuscitation (EPR), a procedure for inducing hypothermia in patients. Cold tissue temperatures reduce metabolism exponentially, greatly extending the window of anaerobic metabolic activity before permanent deoxygenation damage. EPR in patients undergoing hypovolemic shock can preserve the patient until primary surgical care and blood transfusions are attainable., thereby increasing survival rates. The main applications of EPR are military in-situ stabilization for transit to clinical care and extending the survivability of patients requiring prolonged surgery before blood transfusion. The …


Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski Jan 2021

Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski

Honors Undergraduate Theses

The FanWing propulsion system is a novel propulsion system which aerodynamically behaves as a hybrid between a helicopter and a fixed wing aircraft, and if the knowledge base with regards to this novel concept can be fully explored, there could be a new class of aircraft developed. In the current research, only 2D CFD studies have been done for the FanWing, hence the 3D lift characteristics of the FanWing have been unknown thus far, at least in the theoretical domain. Therefore, it was proposed to develop a modified Prandtl's Lifting Line Theory numerical solution and a CFD solution, comparing the …


Computational Studies For Extending Understanding Of Complex Droplet Breakup Mechanisms, Caroline Anderson Jan 2021

Computational Studies For Extending Understanding Of Complex Droplet Breakup Mechanisms, Caroline Anderson

Electronic Theses and Dissertations, 2020-

Conventional methods of classifying droplet breakup are evaluated in the context of unique variation in environmental and droplet fluid conditions. Most characterization is developed for subsonic speeds and Newtonian fluids, so this study extends understanding on how these forms change to a span of applications outside these conditions. Presented examples include the impact effects on hypersonic vehicles travelling through precipitation, where even smallest of rain drops at such speeds can cause damage. Before the droplet even reaches the vehicle, it interacts with the detached bow shock that leads it. Another example of exceptional recent concern is risk of viral transmission …


Experimental Study Of A Liquid Fuel Bluff Body Flame At Elevated Pressures, Karam Paul Jan 2021

Experimental Study Of A Liquid Fuel Bluff Body Flame At Elevated Pressures, Karam Paul

Honors Undergraduate Theses

The purpose of this research was to operate a bluff body flame holder with the objective of stabilizing a flame at elevated pressures over a range of equivalence ratios. The ability to have a ground-based test rig capable of maintaining stable flames at high pressures and temperatures is critical in understanding flames present in modern jet engines and gas turbine technologies. The facility was reconfigured multiple times and the resultant flame was imaged within the optical test section. A converging nozzle was utilized to choke the flow and vary the operating pressures up to 5 atm. By regulating mass flow …