Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Lipid Production And Biofuel Yield From Wood Hydrolysates Using Oleaginous Yeast “Cutaneotrichosporon Curvatus”, Stephanie Ossai May 2024

Lipid Production And Biofuel Yield From Wood Hydrolysates Using Oleaginous Yeast “Cutaneotrichosporon Curvatus”, Stephanie Ossai

Electronic Theses and Dissertations

The conversion of forest bioproducts into biofuel precursors aligns with the United Nations' sustainable development goals of enhancing the world's energy mix and achieving net-zero emissions of greenhouse gases on a global scale by the year 2050. At the core of this study is the chemical pre-conditioning of white pine wood chips to produce hydrolysates rich in hemicelluloses, a vital step towards leveraging the biochemical pathways that convert polysaccharides (cellulose and hemicellulose) and lignin into valuable biofuels. This study explores the use of hydrolysate from the chemical preconditioning system of pine wood chips for microbial oil production. The current study …


Synthesis Of A Pharmaceutical Precursor From Bioderived Glucose, Justin O. P. Waters May 2023

Synthesis Of A Pharmaceutical Precursor From Bioderived Glucose, Justin O. P. Waters

Electronic Theses and Dissertations

Medication costs in the U.S. are high, and manufacturing and production comprise the largest share of those costs. As the world continues to shift to more sustainable methods of production, there are opportunities to reduce these costs through green synthesis. A large number of pharmaceuticals are derived from a precursor (S-3-hydroxy-gamma-butyrolactone ‘HBL’). Drugs that treat cancer, antivirals, antibacterial drugs, and some cholesterol medications all can be derived from HBL. Currently, HBL is almost exclusively derived from petroleum through an expensive and resource intensive process. Until recently, ‘green’ efforts to derive HBL from biomass have been plagued with many of the …


Nsf Career Award Supports Schwartz's Research On The Chemical Process For Making Rubber Component, Marcus Wolf Mar 2021

Nsf Career Award Supports Schwartz's Research On The Chemical Process For Making Rubber Component, Marcus Wolf

General University of Maine Publications

advance his ongoing dissection of the Lebedev process. The well-known, multi-step chemical reaction is used to make butadiene from biomass-derived ethanol. However, little research has been conducted on the Lebedev process at the molecular level. Understanding the intricacies of this process will help researchers create new catalysts necessary for the chemical reactions to make goods from both petroleum and biomass, that would increase butadiene yield.


Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana Dec 2020

Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana

Electronic Theses and Dissertations

This dissertation involves several hydrogenolysis reactions but is mainly focused on hydrodechlorination (HDC) of chlorobenzene (PhCl) and hydrodeoxygenation (HDO) of 2-furancarboxylic acid (FCA). Hydrodechlorination of PhCl has been the subject of research for some time. Here, we used a Pd/C catalyst to study this reaction though rigorous kinetics and mechanistic analyses in a CSTR reactor. The H2/D2 kinetic isotope effect (KIE) experiment revealed that H2 is not involved in a rate controlling step. The kinetics data are in agreement with similar systems reported before and follow a first-order dependence on chlorobenzene, half order for hydrogen and …


Reaction Kinetics And Mechanism Investigations Of Renewable Chemicals Production From Biomass, Hussein Talib Abdulrazzaq Dec 2020

Reaction Kinetics And Mechanism Investigations Of Renewable Chemicals Production From Biomass, Hussein Talib Abdulrazzaq

Electronic Theses and Dissertations

The development of the technologies and the improved processes for the production of high value bio-based chemicals is one of the most important challenges at the present time. This new movement is not only important from an environmental perspective, but also it is a profitable approach to provide affordable and efficient processes. Therefore, the chemical catalytic upgrading processes over various homogenous and heterogeneous catalysis could be an outstanding modification to upgrade biomass-derived platform molecule to high value applications. In this dissertation, we highlight our recent progress in developing new chemistries and processes for upgrading biomass-derived molecules and address the challenges …


So2-Alcohol-Water Fractionation Of Sugarcane Straw, Asif Sharazi Aug 2017

So2-Alcohol-Water Fractionation Of Sugarcane Straw, Asif Sharazi

Electronic Theses and Dissertations

Climate change resulting from fossil fuels combustion is motivating researchers to explore feasible routes to convert renewable biomass into biofuels and biochemicals for a sustainable society. Typically, biofuel is produced from corn or sugarcane but both feedstocks compete with human food supply. Thus, lignocellulosics as renewable feedstock represent a more ethical and ecofriendly approach. Sugarcane straw (SCS) is a cheap and abundantly available feedstock which potentially can be used for biofuels/biochemicals production. It can also help to mitigate environmental and health problems resulting from conventional practice of SCS burning in the fields.

There are different biomass conversion technologies for production …


Characterization Of Catalysts For Hydrodeoxygenation Of Bio-Oils Using Phenol As A Model Compound, Abdulazeez Mohammed Khlewee Aug 2017

Characterization Of Catalysts For Hydrodeoxygenation Of Bio-Oils Using Phenol As A Model Compound, Abdulazeez Mohammed Khlewee

Electronic Theses and Dissertations

Due to the environmental considerations, depletion of fossil fuel reserves and fluctuating non-renewable fuel price, converting non-edible lignocellulosic biomass into renewable energy resources has gained significant importance. Phenol has been chosen as a model compound for catalytic screening because it is abundant in bio-oil composition and shows a high resistance to oxygen removal during hydrodeoxygenation (HDO) reactions. HDO of phenol produces chemicals that can be used as transportation fuels (Aromatics) or fuel additives. Theoretically, HDO of phenol has two distinct reduction pathways: direct deoxygenation (DDO) and hydrogenation (HYD). The previous results published by our group showed a precedent activity and …


Goali: Multicomponent Molecular Transport In Nanoporous Materials, Douglas M. Ruthven, David Sholl, Ronald Chance Jan 2012

Goali: Multicomponent Molecular Transport In Nanoporous Materials, Douglas M. Ruthven, David Sholl, Ronald Chance

University of Maine Office of Research Administration: Grant Reports

In recent years novel diffusion controlled catalytic processes and non-conventional separation processes such as adsorption and membrane processes have gained an increasingly important place in the petroleum and petrochemicals industries. Several factors have driven this trend, including the need to improve the energy efficiency and throughput of refineries, stricter limits on the allowable composition of gasoline and diesel fuel requiring the removal of aromatics and sulfur containing compounds to extremely low levels, the need to process increasingly complex deposits of both natural gas and liquid hydrocarbons, and the possibility of producing liquid fuels from non-traditional sources such as biomass. Although …


Place-Based Approaches To Alternative Energy: The Potential For Forest And Grass Biomass For Aroostook County, Jason Johnston, Soraya Cardenas Jan 2012

Place-Based Approaches To Alternative Energy: The Potential For Forest And Grass Biomass For Aroostook County, Jason Johnston, Soraya Cardenas

Maine Policy Review

Teams at the University of Maine Presque Isle and the University of Maine at Forth Kent are engaged in evaluating the potential for forest and grass biomass energy in Aroostook County, funded through Maine’s Sustainability Solutions Initiative. The article discusses how this potential is being evaluated and the possible ways in which expanding grass and wood biomass might benefit farmers and residents of The County. It suggests that using some of Maine’s farmland for fuel might be sustainable with appropriate management and with consideration for potential environmental and socioeconomic drawbacks


Biomass And Biofuels In Maine: Estimating Supplies For Expanding The Forest Products Industry, Jonathan Rubin, Kate Dickerson, Jacob Kavkewitz Nov 2007

Biomass And Biofuels In Maine: Estimating Supplies For Expanding The Forest Products Industry, Jonathan Rubin, Kate Dickerson, Jacob Kavkewitz

Energy & the Environment

This paper estimates the renewable energy potential of Maine’s forest resources, and how much energy these resources could potentially provide the state. Using the most recent state-specific data available, and a methodology similar to the Billion Tons Report, we find that ethanol production from Maine’s forest residues could potentially provide 18% of Maine’s transportation (gasoline) fuels with a fermentation wood to ethanol process. Making Fischer-Tropsch diesel (F-T diesel) using forest residues can replace 39% of Maine’s petro-diesel consumption. Actual levels of biofuels that can be produced will depend on conversion factors and forestry residue removals that are subject to uncertainty.