Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Engineering

Too Enthusiastic To Care For Safety: Present Status And Recent Developments Of Nanosafety In Asean Countries Mar 2015

Too Enthusiastic To Care For Safety: Present Status And Recent Developments Of Nanosafety In Asean Countries

Faculty of Engineering University of Malaya

Nanotechnology has the prospect to vibrate the imagination of human being and has the ability to be used in almost every sector of human need. With its limitless potentials, there are many environmental, health and safety related concerns due to extremely ambivalent effects of nanoparticles. Studies revealed that nanoparticles can enter the human body through the lungs, intestinal tract, and skin. Therefore, the researchers and workers who handle nanoparticles and nanomaterials can theoretically and primarily be affected, whereas on the consumers this will have secondary effects. This paper aims at sharing and evaluating the investment scenario, present status and recent …


Is There A Relationship Between Research Sponsorship And Publication Impact? An Analysis Of Funding Acknowledgments In Nanotechnology Papers, Jue Wang, Philip Shapira Feb 2015

Is There A Relationship Between Research Sponsorship And Publication Impact? An Analysis Of Funding Acknowledgments In Nanotechnology Papers, Jue Wang, Philip Shapira

Philip Shapira

This study analyzes funding acknowledgments in scientific papers to investigate relationships between research sponsorship and publication impacts. We identify acknowledgments to research sponsors for nanotechnology papers published in the Web of Science during a one-year sample period. We examine the citations accrued by these papers and the journal impact factors of their publication titles. The results show that publications from grant sponsored research exhibit higher impacts in terms of both journal ranking and citation counts than research that is not grant sponsored. We discuss the method and models used, and the insights provided by this approach as well as it …


Social Science Contributions Compared In Synthetic Biology And Nanotechnology, Philip Shapira, Jan Youtie, Yin Li Feb 2015

Social Science Contributions Compared In Synthetic Biology And Nanotechnology, Philip Shapira, Jan Youtie, Yin Li

Philip Shapira

With growing attention to societal issues and implications of synthetic biology, we investigate sources of social science publication knowledge in synthetic biology and probe what might be learned by comparison with earlier rounds of social science research in nanotechnology. “Social science” research is broadly defined to include publications in conventional social science as well as humanities, law, ethics, business, and policy fields. We examine the knowledge clusters underpinning social science publications in nanotechnology and synthetic biology using a methodology based on the analysis of cited references. Our analysis finds that social science research in synthetic biology already has traction and …


Nanotechnology Companies In The United States: A Web-Based Content Analysis Of Companies And Products For Poverty Alleviation, Thomas Woodson Jan 2015

Nanotechnology Companies In The United States: A Web-Based Content Analysis Of Companies And Products For Poverty Alleviation, Thomas Woodson

Thomas Woodson

This study analyzes the goals, nanotechnology experience, corporate social responsibility and products of 50 USA-based companies working with nanotechnology to see if they are developing products that help low-income populations. Out of the top 50 R&D companies that publish and patent nanotechnology research in agri-food, energy and water sectors, 18 of them do not mention nanotechnology on their websites. The other 32 companies discuss nanotechnology in varying degrees. However, only two of the companies relate their nanotechnology R&D to poverty alleviation. Even though few companies refer to poverty alleviation, 30 firms of the sample have some type of corporate social …


Integration Of Biosensors Based On Microfluidic: A Review Jan 2015

Integration Of Biosensors Based On Microfluidic: A Review

Faculty of Engineering University of Malaya

Purpose - Biotechnology is closely associated to microfluidics. During the last decade, designs of microfluidic devices such as geometries and scales have been modified and improved according to the applications for better performance. Numerous sensor technologies existing in the industry has potential use for clinical applications. Fabrication techniques of microfluidics initially rooted from the electromechanical systems (EMS) technology. Design/methodology/approach - In this review, we emphasized on the most available manufacture approaches to fabricate microchannels, their applications and the properties which make them unique components in biological studies. Findings - Major fundamental and technological advances demonstrate the enhancing of capabilities and …


Criterion For An Oscillatory Charged Jet During The Bubble Spinning Process, Ji-Huan He, H.Y. Kong Jan 2014

Criterion For An Oscillatory Charged Jet During The Bubble Spinning Process, Ji-Huan He, H.Y. Kong

Ji-Huan He

The oscillatory diameter of the charged jet during the bubble electrospinning results in beads on the obtained nanofibers. We demonstrate that the applied voltage and the initial flow rate of the jet are the crucial parameters that are necessary to control morphology of the nanofibers. We also find that there is a criterion for production of smooth nanofibers without beads. The theory developed in this paper can be extended to the classical electrospinning and the blown bubble-spinning.


Fractal Harmonic Law And Waterproof/Dustproof, Hai-Yan Kong, Rou-Xi Chen, Ji-Huan He Jan 2014

Fractal Harmonic Law And Waterproof/Dustproof, Hai-Yan Kong, Rou-Xi Chen, Ji-Huan He

Ji-Huan He

The fractal harmonic law admits that the friction between the pure water and the moving surface is the minimum when fractal dimensions of water in Angstrom scale are equal to fractal dimensions of the moving surface in micro scale. In the paper, the fractal harmonic law is applied to demonstrate the mechanism of waterproof/ dustproof. The waterproof phenomenon of goose feathers and lotus leaves is illustrated to verify our results and experimental results agree well with our theoretical analysis.


Connecting Research On Social Issues In Nanotechnology: The Center For Nanotechnology In Society At Arizona State University, Jan Youtie, Philip Shapira Jan 2014

Connecting Research On Social Issues In Nanotechnology: The Center For Nanotechnology In Society At Arizona State University, Jan Youtie, Philip Shapira

Philip Shapira

Central to the emergence of new research topics is the creation of a research network. This paper looks at the creation of a network of researchers of social issues in nanotechnology and the role of the Center for Nanotechnology in Society at Arizona State University (CNS-ASU) in the creation of this network. While there has been US investment in societal research on nanotechnology, a debate exists about the extent to which a research community has been created through these investments. This paper uses three approaches to examine the extent to which CNS-ASU is associated with the development of a research …


Functions And Future Applications Of F1 Atpase As Nanobioengine - Powering The Nanoworld!, Sandip S. Magdum Jan 2013

Functions And Future Applications Of F1 Atpase As Nanobioengine - Powering The Nanoworld!, Sandip S. Magdum

Sandip S. Magdum

Recent nanotechnological revolution mandates astonishing imagination about future nanoworld. Nature has ability to create nanobiomolecules which can function in extraordinary way which can be used to produce nano hybrid systems. The opportunity to use such nanobiomolecules in combination of nanomechanical systems for development of novel nano hybrid systems for their various applications needs to explore in further nanotechnological development. F1 ATPase is a subunit of ATP synthase, which is one of the biomolecular structure works on the plasma membrane of the living cell. The reversible function of F1 ATPase gives a counterclockwise rotation of γ shaft by hydrolyzing ATP and …


Research Inequality In Nanomedicine, Thomas Woodson Nov 2012

Research Inequality In Nanomedicine, Thomas Woodson

Thomas Woodson

The 10-90 gap is an idea in the healthcare literature that less than 10%of all research funding goes to solving health problems that are 90%of the global disease burden. This paper examines whether there is inequality in nanotechnology healthcare research (nanomedicine). To understand the inequality in nanomedicine, I conducted a bibliometric review of Web of Science and PubMed databases. Overall there is not large inequality in nanomedicine research. The bibliometric analysis shows that most nanomedicine research is done in high income countries, but their research portfolios extend beyond rich world diseases like Alzheimer’s disease and diabetes to include research on …


Effect Of Temperature On Surface Tension Of A Bubble And Hierarchical Ruptured Bubbles For Nanofiber Fabrication, Ji-Huan He Jan 2012

Effect Of Temperature On Surface Tension Of A Bubble And Hierarchical Ruptured Bubbles For Nanofiber Fabrication, Ji-Huan He

Ji-Huan He

Polymer bubbles can be used to fabrication of nanofibers using the bubble electrospinning. Temperature is one of the most effective parameters to control the spinning process. Suitable choice of inner and outer temperatures results in a minimal surface tension. A bubble under electronic field will be broken to form daughter bubble cascades, which can be used for nanofiber fabrication.


Review On Fiber Morphology Obtained By Bubble Electrospinning And Blown Bubble Spinning, Ji-Huan He, Hai-Yan Kong, Rui-Rui Yang, Hao Dou, Naeem Faraz, Liang Wang, Chao Feng Jan 2012

Review On Fiber Morphology Obtained By Bubble Electrospinning And Blown Bubble Spinning, Ji-Huan He, Hai-Yan Kong, Rui-Rui Yang, Hao Dou, Naeem Faraz, Liang Wang, Chao Feng

Ji-Huan He

Here we show an intriguing phenomenon in the bubble electrospinning process that the ruptured film might be stripped upwards by an electronic force to form a very thin and long plate-like strip, which might been received in the metal receiver as discontinuous backbone-like wrinkled materials, rather than smooth nanofibers or microspheres. The processes are called the bubble electrospinning. The electronic force can be replaced by a blowing air, and the process is called as the blown bubble spinning. We demonstrate that the size and thickness of the ruptured film are the crucial parameters that are necessary to understand the various …


Understanding The Effects Of Addition Of Copper Nanoparticles To Sn-3.5 Ag Solder Jan 2011

Understanding The Effects Of Addition Of Copper Nanoparticles To Sn-3.5 Ag Solder

A.S. Md Abdul Haseeb

Purpose - The purpose of this paper is to focus on the fabrication of SAC nanocomposites solder and discuss the effects of nanoCu addition on the structure and properties of resulted nanocomposite solder. Design/methodology/ approach - Ball milling is a nonequilibrium processing technique for producing composite metal particles with submicron homogeneity by the repeated cold welding and fracture of powder particles. This method is believed to offer good processablity, precise control over the solder composition, and produce more homogeneous mixture. Findings - It is found that the melting temperature, the wetting behaviour, and hardness are improved when the Cu nanoparticles …


Study Of Nano Structure Mn/Alumina Catalyst Deactivation Through Catalytic Oxidation Of O-Vocs, Hosein Afshary May 2010

Study Of Nano Structure Mn/Alumina Catalyst Deactivation Through Catalytic Oxidation Of O-Vocs, Hosein Afshary

Hosein Afshary

the deactivation and selectivity behavior of nanostructure Mn/γ-Al2O3 catalyst in catalytic oxidation of an O-VOC (isopropanol) was studied. The polluted air was simulated and the catalyst was tested in the course of 50-h time-on-stream. Characterization of fresh and used catalysts was done using FT-IR, XRD, SEM and EDS methods. Comparing the testing results of this catalyst and that of the industrial Pt/Al2O3 catalyst showed that prepared catalyst can be suitable for substitution with the expensive pt/Al2O3 catalyst in environmental applications.


Biomimic Fabrication Of Electrospun Nanofibers With High-Throughput, Ji-Huan He, Yong Liu, Lan Xu, Jian-Yong Yu, Gang Sun Jan 2008

Biomimic Fabrication Of Electrospun Nanofibers With High-Throughput, Ji-Huan He, Yong Liu, Lan Xu, Jian-Yong Yu, Gang Sun

Ji-Huan He

Spider-spun fiber is of extraordinary strength and toughness comparable to those of electrospun fiber, the later needs a very high voltage (from several thousands voltage to several ten thousands voltages) applied to water-soluble protein “soup” that was produced by a spider, furthermore, its mechanical strength dramatically decreases comparable to spider silk. A possible mechanism in spider-spinning process is given, the distinct character in spider-spinning is that its spinneret consists of millions of nano scale tubes, and a bubble can be produced at the apex of each nano-tube. The surface tension of each bubble is extremely small such that it can …


Effect Of Concentration On Electrospun Polyacrylonitrile (Pan) Nanofibers, Ji-Huan He, Yu-Qin Wan, Jian-Yong Yu Jan 2008

Effect Of Concentration On Electrospun Polyacrylonitrile (Pan) Nanofibers, Ji-Huan He, Yu-Qin Wan, Jian-Yong Yu

Ji-Huan He

Abstract: An allometrical scaling relationship between the diameter of electrospun nanofiber and solution concentration is established, the scaling exponent differs greatly between different polymers and the same polymer with different molecules or the same molecules with different properties. The diameter of electrospun polyacrylonitrile (PAN) nanofibers increases approximately linearly with solution concentration.


Controlling Numbers And Sizes Of Beads In Electrospun Nanofibers, Yong Liu, Ji-Huan He, Jian-Yong Yu, Hong-Mei Zeng Jan 2008

Controlling Numbers And Sizes Of Beads In Electrospun Nanofibers, Yong Liu, Ji-Huan He, Jian-Yong Yu, Hong-Mei Zeng

Ji-Huan He

Abstract BACKGROUND: Electrospinning is a powerful and effective method to produce nanofibers. Beads have been observed widely in electrospun products, but effects of solvents, weight concentrations and salt additives on the number and morphology of beads in the electrospinning process have not been systematically studied. RESULTS: Both theoretical analysis and experimental results show that beads strongly depend upon solvents, weight concentrations and salt additives. Either a suitable weight concentration or a suitable salt additive can completely prevent the occurrence of beads in the electrospinning process; solvents can affect the number of beads and the morphology of electrospun fibers. CONCLUSION: Beads …


A New Resistance Formulation For Carbon Nanotubes, Ji-Huan He Jan 2008

A New Resistance Formulation For Carbon Nanotubes, Ji-Huan He

Ji-Huan He

A new resistance formulation for carbon nanotubes is suggested using fractal approach. The new formulation is also valid for other nonmetal conductors including nerve fibers, conductive polymers, and molecular wires. Our theoretical prediction agrees well with experimental observation.


Non-Ionic Surfactants For Enhancing Electrospinability And For The Preparation Of Electrospun Nanofibers, Shu-Qiang Wang, Ji-Huan He, Lan Xu Jan 2008

Non-Ionic Surfactants For Enhancing Electrospinability And For The Preparation Of Electrospun Nanofibers, Shu-Qiang Wang, Ji-Huan He, Lan Xu

Ji-Huan He

Abstract BACKGROUND: Electrospinning is widely used to produce nanofibers; however, not every polymer can be electrospun into nanofibers. To enhance electrospinability, much effort has been made in designing new apparatus, such as vibration-electrospinning, magneto-electrospinning and bubble-electrospinning. RESULTS: A representative non-ionic surfactant, TritonR X-100, is used to enhance electrospinability. The surfactant is added to an electrospun poly(vinyl pyrrolidone) polymer solution, and a dramatic reduction in surface tension is observed. As a result, a moderate voltage is needed to produce fine nanofibers, which are commonly observed during the conventional electrospinning procedure only at elevated voltage. CONCLUSION: The novel strategy produces smaller nanofibers …


Nanocomposite Powders For New Contact Materials Based On Copper And Alumina, Zeljko J. Kamberovic Jan 2008

Nanocomposite Powders For New Contact Materials Based On Copper And Alumina, Zeljko J. Kamberovic

Zeljko J Kamberovic

This paper is a contribution to characterization of Cu-Al2O3 powders with nanostructure designed for the production of dispersion strengthened contact materials. New materials with predetermined properties can be successfully synthesized by utilizing the principles of hydrometallurgy and powder metallurgy. The results show a development of a new procedure for the synthesis. The applied characterization methods were differential thermal and thermogravimetric analysis (DTA-TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM): Focused Ion Beam (FIB) and Analytical Electron Microscopy (AEM). Nanostructure characteristics, particle size in range 20-50 nm, and uniform distribution of dispersoide in copper matrix were validated.


Determination Of Al2o3 Particle Size In Cu-Al2o3 Nanocomposite Materials Using Uv Spectrophotometry, Zeljko J. Kamberovic Jan 2008

Determination Of Al2o3 Particle Size In Cu-Al2o3 Nanocomposite Materials Using Uv Spectrophotometry, Zeljko J. Kamberovic

Zeljko J Kamberovic

In order to achieve improved mechanical properties of dispersion strengthened nanocomposite, without influencing electrical and thermal conductivity it is necessary for dispersoide to be nano sized and uniformly distributed in base metal matrix. In this paper are presented the results concerning possibility of using UV spectrophotometry for determination of alumina particle size in Cu-Al2O3 system. Presented results show that this method is unefficient as method for determination of dispersoide particle size, due to the coalescence of particles false results are obtained, i.e. particle size significantly higher then one determined by image analysis.


Electrospinning: A Promising Technology For Discontinuous And Continuous Nanofibers, Ji-Huan He Jan 2008

Electrospinning: A Promising Technology For Discontinuous And Continuous Nanofibers, Ji-Huan He

Ji-Huan He

No abstract provided.


Mathematical Models For Continuous Electrospun Nanofibers And Electrospun Nanoporous Microspheres, Ji-Huan He, Lan Xu, Yue Wu, Yong Liu Jan 2007

Mathematical Models For Continuous Electrospun Nanofibers And Electrospun Nanoporous Microspheres, Ji-Huan He, Lan Xu, Yue Wu, Yong Liu

Ji-Huan He

Abstract: A brief review of mathematical models of electrospinning is given. The nano-effect and electrospinning dilation are presented to explain how to prepare extremely high strength continuous nanotibers and nanoporous microspheres, respectively. According to the established models, vibration-electrospinning is introduced to improve electrospinability, Siro-electrospinning is suggested to mimic the spinning procedure of a spider and magneto-electrospinning is used to control the instability arising in the electrospinning process. A new theory linked to both classical mechanics and quantum mechanics should be developed to explain certain special phenomena in electrospinning. E-infinity theory is considered to be a potential theory to deal with …


Sintering Of Cu–Al2o3 Nano-Composite Powders Produced By A Thermochemical Route, Zeljko J. Kamberovic Jan 2007

Sintering Of Cu–Al2o3 Nano-Composite Powders Produced By A Thermochemical Route, Zeljko J. Kamberovic

Zeljko J Kamberovic

This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM) coupled with energy dispersive spectroscopy (EDS), differenttial thermal and thermogravimetric (DTA–TGA) analysis and X-ray diffraction (XRD) analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by …


Synthesis And Sintering Of Cu-Al2o3 Nanocomposite Powders Produced By A Thermochemical Route, Zeljko J. Kamberovic Jan 2007

Synthesis And Sintering Of Cu-Al2o3 Nanocomposite Powders Produced By A Thermochemical Route, Zeljko J. Kamberovic

Zeljko J Kamberovic

By hydrometallurgy and powder metallurgy along with prognosis of physical- chemical properties, a synthesis of new improved materials can be successfully performed with in advance pre-set properties which is conditioned by a quality of starting powders i.e. by improving their structure. In accordance with that, this paper presents synthesis of the nanocomposite Cu-Al2O3 powder by thermochemical method and sintering with a comparative analysis of the mechanical and electrical properties of obtained solid samples. Nanocrystaline Cu-Al2O3 powders were produced by thermochemical method through following stages: spray-drying, oxidation of precursor powder, reduction by hydrogen and homogenisation. Characterization of powders included differential-thermal and …


Bubble Electrospinning For Mass Production Of Nanofibers, Yong Liu, Ji-Huan He Jan 2007

Bubble Electrospinning For Mass Production Of Nanofibers, Yong Liu, Ji-Huan He

Ji-Huan He

A new bottom-up gas-jet electrospinning process for mass production is presented. A bubble-induced cone on the surface of polymer solution is equivalent to the Taylor cone in traditional electrospinning, which is a must for producing nanofibers. In this study bubbles are produced by compressed air or nitrogen through a nozzle settled in the bottom of the solution. Multiple jets are observed during the electrospinning process as predicted for it is easy to many bubble-induced cones on the solution surface. The new electrospinning mechanism can be used for mass production of nanofibers.


Electrospinning Of High-Molecule Peo Solution, Yu-Qin Wan, Ji-Huan He, Jian-Yong Yu, Yue Wu Jan 2007

Electrospinning Of High-Molecule Peo Solution, Yu-Qin Wan, Ji-Huan He, Jian-Yong Yu, Yue Wu

Ji-Huan He

Electrospinning is a simple but powerful method for making nanofibers that can then be collected to create porous mats. We expand the range of this technique by making nanofibers from macromolecules with a molecular weight of 3,000,000, namely poly(ethylene oxide) (PEO). Gelation of PEO blocks its spinning by traditional electrospinning. PEO was mixed with pure alcohol, and in specific concentration 10 wt % and under vibration condition, the mixed solution behaves like polymers for electrospinning, the average diameter of the obtained nanofibers is about 100 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3840-3843, 2007


Electrospinning: The Big World Of Small Fibers, Ji-Huan He Jan 2007

Electrospinning: The Big World Of Small Fibers, Ji-Huan He

Ji-Huan He

Similar to the nuclear age, the so-called nanoage is coming, the growing gap between nano haves and nano have-nots, however, will remain, as has global competition, particularly from the electrospinning technology.


The Synthesis Of Ultrafine And Nanocomposite Powders Based On Copper, Silver And Alumina, Zeljko J. Kamberovic Jan 2006

The Synthesis Of Ultrafine And Nanocomposite Powders Based On Copper, Silver And Alumina, Zeljko J. Kamberovic

Zeljko J Kamberovic

Contemporary materials with predetermined properties can be successfully synthesized by utilising the principles of hydrometallurgy and powder metallurgy. The results of developing a new procedure for the synthesis of ultrafine and nanocomposite powders based on copper, silver and alumina are presented in this paper. A two-component nanocomposite powder, Cu-Al2O3, was synthesized by a thermochemical procedure, by deposition from an aqueous solution of soluble metal salts, Cu(NO3)2 and Al(NO3)3. A three-component Cu-Ag-Al2O3 powder was produced by mechanically alloying nanocomposite Cu-Al2O3 powder and Cu-Ag powder, synthesized by the thermochemical procedure. The produced powders were characterized by determining the particle specific area, pouring …


Allometric Scaling And Instability In Electrospinning, Ji-Huan He, Yu-Qin Wan, Jian-Yong Yu Jan 2004

Allometric Scaling And Instability In Electrospinning, Ji-Huan He, Yu-Qin Wan, Jian-Yong Yu

Ji-Huan He

The regulation of scale and bifurcation-like instability in electrospinning are intriguing and enduring problems after the technology was invented by Formhals in 1934. Regulatory mechanisms for controlling the radius of electrospun fibers are clearly illustrated in the different states. Generally, the relationship between radius r of jet and the axial distance z from nozzle can be expressed as an allometric equation of the form , the values of the scaling exponent (b) for the initial steady stage, instability stage, and terminal stage are respectively –1/2, –1/4, and 0. Allometry in economy, biology, turbulence, astronomy, neural resistance, conductive textile, and macromolecule …