Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 56

Full-Text Articles in Engineering

Role Of Diffusive, Photovoltaic, And Thermal Effects In Beam Fanning In Linbo3, Jaw-Jueh Liu, Partha P. Banerjee, Q. W. Song Apr 2016

Role Of Diffusive, Photovoltaic, And Thermal Effects In Beam Fanning In Linbo3, Jaw-Jueh Liu, Partha P. Banerjee, Q. W. Song

Partha Banerjee

We analyze the steady-state (Gaussian) beam fanning in LiNbO3 from the nonlinearly coupled Kukhtarev equations by including both diffusive and photovoltaic effects and by adding the thermal effect in the calculation. There is good agreement between theory and experiment. The results show a symmetric beam-fanning pattern whose size depends on the beam waist and the power. Possible applications of our results in nondestructive testing of material parameters and optical limiting are discussed.


Simulation Of Two-Dimensional Nonlinear Envelope Pulse Dynamics By A Two-Step Spatiotemporal Angular Spectrum Method, H. K. Sim, Adrianus Korpel, Karl E. Lonngren, Partha P. Banerjee Apr 2016

Simulation Of Two-Dimensional Nonlinear Envelope Pulse Dynamics By A Two-Step Spatiotemporal Angular Spectrum Method, H. K. Sim, Adrianus Korpel, Karl E. Lonngren, Partha P. Banerjee

Partha Banerjee

We present an extension of our previous nonlinear beam-simulation method to the propagation and interaction of pulse envelopes. The extra time dimension is applied in the context of a dispersive nonlinear medium that is described by a Klein–Gordon equation with an added cubically nonlinear, self-focusing term. Pulse propagation in this medium is modeled as the evolution of a spatiotemporal spectrum—i.e., the frequency-dependent angular spectrum of the pulse envelope—traversing a sequence of self-induced, thin, weak phase filters. Preliminary simulation experiments show agreement with known behavior in the absence of nonlinearity, confirm the existence of an (apparently unstable) stationary solution, and demonstrate …


Theoretical And Experimental Studies Of Propagation Of Beams Through A Finite Sample Of A Cubically Nonlinear Material, Partha P. Banerjee, Raj M. Misra, M. Maghraoui Apr 2016

Theoretical And Experimental Studies Of Propagation Of Beams Through A Finite Sample Of A Cubically Nonlinear Material, Partha P. Banerjee, Raj M. Misra, M. Maghraoui

Partha Banerjee

Propagation of an externally focused or defocused Gaussian beam in a cubically nonlinear material is studied analytically and experimentally. The theoretical analysis is applied to determine the sign and magnitude of n2 for a material by means of a single-beam experiment with a finite nonlinear sample within which propagational diffraction cannot be neglected. Experimental results for a solution of chlorophyll in ethanol are reported. Based on available theory, an average n2 can be defined for a nonlinearity of thermal origin, and this value is found to be in good agreement with experimental results. Finally, the theoretical analysis and …


On A Simple Derivation Of The Fresnel Diffraction Formula And A Transfer Function Approach To Wave Propagation, Partha P. Banerjee, Ting-Chung Poon Apr 2016

On A Simple Derivation Of The Fresnel Diffraction Formula And A Transfer Function Approach To Wave Propagation, Partha P. Banerjee, Ting-Chung Poon

Partha Banerjee

The Fresnel diffraction formula is straightforwardly obtained by solving a partial differential equation (PDE) for envelope propagation using Fourier transform techniques. The PDE, in turn, can be derived from the dispersion relation of a linear medium by employing a simple operator formalism. The transfer function and impulse response of propagation follows as a spin‐off and is used to solve illustrative problems. Huygens’ principle is visualized as a consequence of the convolution property of linear systems.


Notch Spatial Filtering With An Acousto-Optic Modulator, Partha P. Banerjee, Dongqing Cao, Ting-Chung Poon Apr 2016

Notch Spatial Filtering With An Acousto-Optic Modulator, Partha P. Banerjee, Dongqing Cao, Ting-Chung Poon

Partha Banerjee

The role of acousto-optic (AO) modulators in programmable real-time image processing has recently been demonstrated. For fully investigating the image-processing capabilities of the AO modulator, general techniques to derive spatial transfer functions are needed for a variety of physical situations. We develop a technique to determine the spatial transfer functions numerically for various cases of beam incidence on an AO modulator. Normal incidence and incidence at twice the Bragg angle are investigated as examples for which double-sided and single-sided notch spatial filtering, respectively, are achieved. The observed spatial-filtering characteristics are reconciled with simple intuitive physical arguments.


Nonlinear Transverse Effects In Second-Harmonic Generation, Pawel Pliszka, Partha P. Banerjee Apr 2016

Nonlinear Transverse Effects In Second-Harmonic Generation, Pawel Pliszka, Partha P. Banerjee

Partha Banerjee

We study a three-dimensional model of interaction of fundamental-frequency and second-harmonic beams in a quadratically nonlinear medium. Numerical simulations of the three-dimensional propagation problem in the presence of diffraction and anisotropy are performed under the paraxial approximation. The role of the transverse effects in various regimes is investigated. We demonstrate the effect of phase modulation and an induced nonlinear focusing during the interaction of the fundamental frequency with the generated second harmonic.


Multiwave Coupling In A High-Gain Photorefractive Polymer, Kenji Matsushita, Partha P. Banerjee, S. Ozaki, Daisuke Miyazaki Apr 2016

Multiwave Coupling In A High-Gain Photorefractive Polymer, Kenji Matsushita, Partha P. Banerjee, S. Ozaki, Daisuke Miyazaki

Partha Banerjee

The characteristics of a new high-gain photorefractive polymer composite with a PNP chromophore are investigated. Competition between beam fanning and two-wave coupling (TWC) is predicted and verified experimentally. The intensity dependence of TWC gain is studied. Higher diffraction order and forward phase conjugation in a TWC geometry are observed and explained.


Linear And Nonlinear Propagation In Negative Index Materials, Partha P. Banerjee, George Nehmetallah Apr 2016

Linear And Nonlinear Propagation In Negative Index Materials, Partha P. Banerjee, George Nehmetallah

Partha Banerjee

We analyze linear propagation in negative index materials by starting from a dispersion relation and by deriving the underlying partial differential equation. Transfer functions for propagation are derived in temporal and spatial frequency domains for unidirectional baseband and modulated pulse propagation, as well as for beam propagation. Gaussian beam propagation is analyzed and reconciled with the ray transfer matrix approach as applied to propagation in negative index materials. Nonlinear extensions of the linear partial differential equation are made by incorporating quadratic and cubic terms, and baseband and envelope solitary wave solutions are determined. The conditions for envelope solitary wave solutions …


Application Of Up-Sampling And Resolution Scaling To Fresnel Reconstruction Of Digital Holograms, Logan Williams, George Nehmetallah, Rola Aylo, Partha P. Banerjee Apr 2016

Application Of Up-Sampling And Resolution Scaling To Fresnel Reconstruction Of Digital Holograms, Logan Williams, George Nehmetallah, Rola Aylo, Partha P. Banerjee

Partha Banerjee

Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.


Achieving Enhanced Gain In Photorefractive Polymers By Eliminating Electron Contributions Using Large Bias Fields, C. M. Liebig, S. H. Buller, Partha P. Banerjee, S. A. Basun, Pierre-Alexandre Blanche, J. Thomas, Cory W. Christenson, N. Peyghambarian, Dean R. Evans Apr 2016

Achieving Enhanced Gain In Photorefractive Polymers By Eliminating Electron Contributions Using Large Bias Fields, C. M. Liebig, S. H. Buller, Partha P. Banerjee, S. A. Basun, Pierre-Alexandre Blanche, J. Thomas, Cory W. Christenson, N. Peyghambarian, Dean R. Evans

Partha Banerjee

Photorefractive polymers have been extensively studied for over two decades and have found applications in holographic displays and optical image processing. The complexity of these materials arises from multiple charge contributions, for example, leading to the formation of competing photorefractive gratings. It has been recently shown that in a photorefractive polymer at relatively moderate applied electric fields the primary charge carriers (holes) establish an initial grating, followed by a subsequent competing grating (electrons) resulting in a decreased two-beam coupling and diffraction efficiencies. In this paper, it is shown that with relatively large sustainable bias fields, the two-beam coupling efficiency is …


3d Visualization Using Pulsed And Cw Digital Holographic Tomography Techniques, George Nehmetallah, Partha P. Banerjee, D. Ferree, R. Kephart, Sarat C. Praharaj Apr 2016

3d Visualization Using Pulsed And Cw Digital Holographic Tomography Techniques, George Nehmetallah, Partha P. Banerjee, D. Ferree, R. Kephart, Sarat C. Praharaj

Partha Banerjee

We outline the use of digital holographic tomography to determine the three-dimensional (3D) shapes of falling and static objects, such as lenslets and water droplets. Reconstruction of digitally recorded inline holograms is performed using multiplicative and Radon transform techniques to reveal the exact 3D shapes of the objects.


Extended Permutation Filters And Their Application To Edge Enhancement, Russell Hardie, Kenneth Barner May 2015

Extended Permutation Filters And Their Application To Edge Enhancement, Russell Hardie, Kenneth Barner

Russell C. Hardie

Extended permutation (EP) filters are defined and analyzed. In particular, we focus on extended permutation rank selection (EPRS) filters. These filters are constrained to output an order statistic from an extended observation vector. This extended vector includes N observation samples and K statistics that are functions of the observation samples. The rank permutations from selected samples in this extended observation vector are used as the basis for selecting an order statistic output. We show that by including the sample mean in the extended observation vector, the filters exhibit excellent edge enhancement properties. We also show that several previously defined classes …


Combinatorial Search Of Thermoelastic Shape-Memory Alloys With Extremely Small Hysteresis Width, Jun Cui, Yong Chu, Olugbenga Famodu, Yasubumi Furuya, Jason Hattrick-Simpers, Richard James, Alfred Ludwig, Sigurd Thienhaus, Manfred Wuttig, Zhiyong Zhang, Ichiro Takeuchi Mar 2015

Combinatorial Search Of Thermoelastic Shape-Memory Alloys With Extremely Small Hysteresis Width, Jun Cui, Yong Chu, Olugbenga Famodu, Yasubumi Furuya, Jason Hattrick-Simpers, Richard James, Alfred Ludwig, Sigurd Thienhaus, Manfred Wuttig, Zhiyong Zhang, Ichiro Takeuchi

Jason R. Hattrick-Simpers

No abstract provided.


A Map Estimator For Simultaneous Superresolution And Detector Nonunifomity Correct, Russell Hardie, Douglas Droege Mar 2015

A Map Estimator For Simultaneous Superresolution And Detector Nonunifomity Correct, Russell Hardie, Douglas Droege

Russell C. Hardie

During digital video acquisition, imagery may be degraded by a number of phenomena including undersampling, blur, and noise. Many systems, particularly those containing infrared focal plane array (FPA) sensors, are also subject to detector nonuniformity. Nonuniformity, or fixed pattern noise, results from nonuniform responsivity of the photodetectors that make up the FPA. Here we propose a maximuma posteriori (MAP) estimation framework for simultaneously addressing undersampling, linear blur, additive noise, and bias nonuniformity. In particular, we jointly estimate a superresolution (SR) image and detector bias nonuniformity parameters from a sequence of observed frames. This algorithm can be applied to video in …


A Review Of Parallel Operation Of Active Power Filters In The Distributed Generation System, Shafiuzzaman Khadem, Malabika Basu, Michael Conlon Mar 2014

A Review Of Parallel Operation Of Active Power Filters In The Distributed Generation System, Shafiuzzaman Khadem, Malabika Basu, Michael Conlon

Dr. Shafiuzzaman Khan Khadem

In this paper a technical review of parallel operation of Active Power Filter (APF) for harmonic power compensation in distributed generation (DG) network has been presented. Controlling methods and connection topologies with their pros and cons are described. Recent improvements in controlling and future trends for the application of APFs in distributed mode are also identified.


Power Quality Improvement Of Distributed Generation Integrated Network With Unified Power Quality Conditioner., Shafiuzzaman Khan Khadem Mar 2014

Power Quality Improvement Of Distributed Generation Integrated Network With Unified Power Quality Conditioner., Shafiuzzaman Khan Khadem

Dr. Shafiuzzaman Khan Khadem

With the increased penetration of small scale renewable energy sources in the electrical distribution network, maintenance or improvement of power quality has become more critical than ever where the level of voltage and current harmonics or disturbances can vary widely. For this reason, Custom Power Devices (CPDs) such as the Unified Power Quality Conditioner (UPQC) can be the most appropriate solution for enhancing the dynamic performance of the distribution network, where accurate prior knowledge may not be available. Therefore, the main objective of the present research is to investigate the (i) placement (ii) integration (iii) capacity enhancement and (iv) real …


A Shade Tolerant Panel Design For Thin Film Photovoltaics, Sourabh Dongaonkar, Muhammad Alam Mar 2013

A Shade Tolerant Panel Design For Thin Film Photovoltaics, Sourabh Dongaonkar, Muhammad Alam

Sourabh Dongaonkar

We analyze the problem of partial shading of thin film photovoltaic (TFPV) panels, using full two dimensional circuit simulations. By accounting for the panel structure and typical array configurations, we can accurately account for the effect of various shading configurations at the cell and panel level. We demonstrate the limitation of external bypass diodes in protecting shaded cells from reverse breakdown, and explore the whole range of shading scenarios and their impact on reverse stress experienced by shaded cells. Based on the analysis, we identify the key aspects of shading problem, and formulate design rules for shadow aware geometrical design …


Reverse Stress Metastability Of Shunt Current In Cigs Solar Cells, Sourabh Dongaonkar, Erik Sheets, Rakesh Agrawal, Muhammad Alam Mar 2013

Reverse Stress Metastability Of Shunt Current In Cigs Solar Cells, Sourabh Dongaonkar, Erik Sheets, Rakesh Agrawal, Muhammad Alam

Sourabh Dongaonkar

Partial shading in thin film solar panels can result in reverse bias stress across shaded cells. Therefore, it is important to understand the effect of such reverse stress in commercially competitive PV technologies such as CIGS. In this paper, we systematically investigate the effect of moderate reverse bias on solution-processed CIGS solar cells. We subject the solar cells to varying degrees of reverse biases and continuously monitor the impact of the stress on dark current. We also explore the relaxation behavior of dark current following passive storage and the long term effect of the shadow stress on power output of …


Parallel Recording Of Neurotransmitters Release From Chromaffin Cells Using A 10 X 10 Cmos Ic Potentiostat Array With On-Chip Working Electrodes, Brian Kim, Adam Herbst, Sung Kim, Bradley Minch, Manfred Lindau Feb 2013

Parallel Recording Of Neurotransmitters Release From Chromaffin Cells Using A 10 X 10 Cmos Ic Potentiostat Array With On-Chip Working Electrodes, Brian Kim, Adam Herbst, Sung Kim, Bradley Minch, Manfred Lindau

Bradley Minch

Neurotransmitter release is modulated by many drugs and molecular manipulations. We present an active CMOS-based electrochemical biosensor array with high throughput capability (100 electrodes) for on-chip amperometric measurement of neurotransmitter release. The high-throughput of the biosensor array will accelerate the data collection needed to determine statistical significance of changes produced under varying conditions, from several weeks to a few hours. The biosensor is designed and fabricated using a combination of CMOS integrated circuit (IC) technology and a photolithography process to incorporate platinum working electrodes on-chip. We demonstrate the operation of an electrode array with integrated high-gain potentiostats and output time-division …


Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen Jan 2013

Cause And Prevention Of Moisture-Induced Degradation Of Resistance Random Access Memory Nanodevices, Albert Chen

Albert B Chen

Dielectric thin films in nanodevices may absorb moisture, leading to physical changes and property/performance degradation, such as altered data storage and readout in resistance random access memory. Here we demonstrate using a nanometallic memory that such degradation proceeds via nanoporosity, which facilitates water wetting in otherwise nonwetting dielectrics. Electric degradation only occurs when the device is in the charge-storage state, which provides a nanoscale dielectrophoretic force directing H2O to internal field centers (sites of trapped charge) to enable bond rupture and charged hydroxyl formation. While these processes are dramatically enhanced by an external DC or AC field and electron-donating electrodes, …


Demonstration And Modeling Of Multi-Bit Resistance Random Access Memory, Albert Chen Dec 2012

Demonstration And Modeling Of Multi-Bit Resistance Random Access Memory, Albert Chen

Albert B Chen

Although intermediates resistance states are common in resistance random access memory (RRAM), two-way switching among them has not been demonstrated. Using a nanometallic bipolar RRAM, we have illustrated a general scheme for writing/rewriting multi-bit memory using voltage pulses. Stability conditions for accessing intermediate states have also been determined in terms of a state distribution function and the weight of serial load resistance. A multi-bit memory is shown to realize considerable space saving at a modest decrease of switching speed.


Asymptotic Spectral Efficiency Of Multiantenna Links In Wireless Networks With Limited Tx Csi, Siddhartan Govindasamy, Daniel Bliss, David Staelin Dec 2012

Asymptotic Spectral Efficiency Of Multiantenna Links In Wireless Networks With Limited Tx Csi, Siddhartan Govindasamy, Daniel Bliss, David Staelin

Siddhartan Govindasamy

An asymptotic technique is presented for finding the spectral efficiency of multiantenna links in spatially distributed wireless networks where transmitters have channel-state-information (CSI) corresponding to their target receiver. Transmitters are assumed to transmit independent data streams on a limited number of channel modes which limits the rank of transmit covariance matrices. An approximation for the spectral efficiency in the interference-limited regime as a function of link-length, interferer density, number of antennas per receiver and transmitter, number of transmit streams, and path-loss exponent is derived. It is found that targeted-receiver CSI, which can be acquired with low overhead in duplex systems …


Terahertz And Microwave Detection Using Metallic Single Wall Carbon Nanotubes, Enrique Carrion Aug 2012

Terahertz And Microwave Detection Using Metallic Single Wall Carbon Nanotubes, Enrique Carrion

Enrique A Carrion

Carbon nanotubes (CNTs) are promising nanomaterials for high frequency applications due to their unique physical characteristics. CNTs have a low heat capacity, low intrinsic capacitance, and incredibly fast thermal time constants. They can also exhibit ballistic transport at low bias, for both phonons and electrons, as evident by their fairly long mean free paths. However, despite the great potential they present, the RF behavior of these nanostructures is not completely understood. In order to explore this high frequency regime we studied the microwave (MW) and terahertz (THz) response of individual and bundled single wall nanotube based devices. This thesis is …


Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz Jul 2012

Power Mems And Microengines, Alan Epstein, Stephen Senturia, G. Ananthasuresh, Arturo Ayon, Kenneth Breuer, Kuo-Shen Chen, Fredric Ehrich, Gautam Gauba, Reza Ghodssi, C. Groshenry, Stuart Jacobson, Jeffrey Lang, Chuang-Chia Lin, Amit Mehra, José Oscar Mur-Miranda, Steve Nagle, D. Orr, Ed Piekos, Martin Schmidt, Gregory Shirley, Mark Spearing, Choon Tan, Sheng-Yang Tzeng, Ian Waitz

José Oscar Mur-Miranda

MIT is developing a MEMS-based gas turbine generator. Based on high speed rotating machinery, this 1 cm diameter by 3 mm thick SiC heat engine is designed to produce 10-20 W of electric power while consuming 10 grams/hr of H2. Later versions may produce up to 100 W using hydrocarbon fuels. The combustor is now operating and an 80 W micro-turbine has been fabricated and is being tested. This engine can be considered the first of a new class of MEMS device, power MEMS, which are heat engines operating at power densities similar to those of the best large scale …


A Physical Model For The Kink Effect In Inalas/Ingaas Hemt’S, Mark Somerville, Alexander Ernst, Jesus Del Alamo Jul 2012

A Physical Model For The Kink Effect In Inalas/Ingaas Hemt’S, Mark Somerville, Alexander Ernst, Jesus Del Alamo

Mark Somerville

We present a new model for the the kink effect in InAlAs/InGaAs HEMTs. The model suggests that the kink is due to a threshold voltage shift which arises from a hole pile-up in the extrinsic source and an ensuing charging ofthe surface and/or the buffer-substrate interface. The model captures many of the observed behaviors of the kink, including the kink's dependence on bias, time, temperature, illumination, and device structure. Using the model, we have developed a simple equivalent circuit, which reproduced well the kink's dc characteristics, its time evolution in the nanosecond range, and its dependence on illumination.


Determining Dominant Breakdown Mechanisms In Inp Hemts, Mark Somerville, Chris Putnam, Jesus Del Alamo Jul 2012

Determining Dominant Breakdown Mechanisms In Inp Hemts, Mark Somerville, Chris Putnam, Jesus Del Alamo

Mark Somerville

We present a new technique for determining the dominant breakdown mechanism in InAlAs-InGaAs high-electron mobility transistors. By exploiting both the temperature dependence and the bias dependence of different physical mechanisms, we are able to discriminate impact ionization gate current from tunneling and thermionic field emission gate current in these devices. Our results suggest that the doping level of the supply layers plays a key role in determining the relative importance of these two effects.


Strained Si On Insulator Technology: From Materials To Devices, T. Langdo, M. Currie, Z.-Y. Cheng, J. Fiorenza, M. Erdtmann, G. Braithwaite, C. Leitz, C. Vineis, J. Carlin, A. Lochtefeld, M. Bulsara, Isaac Lauer, Dimitri Antoniadis, Mark Somerville Jul 2012

Strained Si On Insulator Technology: From Materials To Devices, T. Langdo, M. Currie, Z.-Y. Cheng, J. Fiorenza, M. Erdtmann, G. Braithwaite, C. Leitz, C. Vineis, J. Carlin, A. Lochtefeld, M. Bulsara, Isaac Lauer, Dimitri Antoniadis, Mark Somerville

Mark Somerville

SiGe-free strained Si on insulator (SSOI) is a new material system that combines the carrier transport advantages of strained Si with the reduced capacitance and improved scalability of thin film silicon on insulator (SOI). We demonstrate fabrication of 20% Ge equivalent strain level SSOI substrates with Si thicknesses of 100 and 400 Å by hydrogen-induced layer transfer of strained Si layers from high quality graded SiGe virtual substrates. The substrate properties are excellent: wafer scale strained Si film thickness uniformities are better than 8%, strained Si surface roughnesses are better than 0.5 nm RMS, and robust tensile strain levels are …


Floating-Gate Devices: They Are Not Just For Digital Memories Anymore, Paul Hasler, Bradley Minch, Chris Diorio Jul 2012

Floating-Gate Devices: They Are Not Just For Digital Memories Anymore, Paul Hasler, Bradley Minch, Chris Diorio

Bradley Minch

Since the first reported floating-gate structure in 1967, floating-gate transistors have been used widely to store digital information for long periods in structures such as EPROMs and EEPROMs. Recently floating-gate devices have found applications as analog memories, analog and digital circuit elements, and adaptive processing elements. Floating-gate devices have found commerical applications, e.g. ISD, for long-term non-volatile information storage devices for analog applications. The focus of floating-gate devices has been towards fabrication in standard CMOS processes, as opposed to the specialized processes for fabricating digital non-volatile memories. Floating-gate circuits can be designed at any or all of three levels: analog …


A Floating-Gate Technology For Digital Cmos Processes, Bradley Minch, Paul Hasler Jul 2012

A Floating-Gate Technology For Digital Cmos Processes, Bradley Minch, Paul Hasler

Bradley Minch

We discuss the possibility of developing high-quality floating-gate memories and circuits in digital CMOS technologies that have only one layer of polysilicon. Here, the primary concern is whether or not we can get adequate control-gate linearity from MOS capacitors. We employ two experimental procedures to address this issue and find acceptable floating-gate circuit behaviour with MOS capacitors. First, we simultaneously characterize an MOS capacitor and a linear capacitor; the experimental data show that MOS capacitors behave similarly to linear capacitors over a finite, but usable range. Second, we characterize two typical floating-gateMOS circuit primitives, a floating-gate amplifier and a multiple-input …


Adaptive Circuits Using Pfet Floating-Gate Devices, Paul Hasler, Bradley Minch, Chris Diorio Jul 2012

Adaptive Circuits Using Pfet Floating-Gate Devices, Paul Hasler, Bradley Minch, Chris Diorio

Bradley Minch

In this paper, we describe our floating-gate pFET device, with its many circuit applications and supporting experimental measurements. We developed these devices in standard double-poly CMOS technologies by utilizing many effects inherent in these processes. We add floating-gate charge by electron tunneling, and we remove floating-gate charge by hot-electron injection. With this floating-gate technology, we cannot only build analog EEPROMs, we can also implement adaptation and learning when we consider floating-gate devices to be circuit elements with important time-domain dynamics. We start by discussing non-adaptive properties of floating-gate devices and we present two representative non-adaptive applications. First, we discuss using …