Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 51

Full-Text Articles in Engineering

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Nov 2017

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Jeffrey Hettinger

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was found that …


S41598-017-16744-0.Pdf, Zlatan Aksamija Nov 2017

S41598-017-16744-0.Pdf, Zlatan Aksamija

Zlatan Aksamija

No abstract provided.


Evolution And Rationale For United States Department Of Defense Electromagnetic Pulse Protection Standard, George H. Baker Iii Nov 2017

Evolution And Rationale For United States Department Of Defense Electromagnetic Pulse Protection Standard, George H. Baker Iii

George H Baker

The United States (US) Department of Defense (DoD) Electromagnetic Pulse (EMP) protection standard offers a solid basis for protecting commercial communication, data, and control facilities. Because of the standard’s shielded barrier and test requirements, it is not surprising that there is a strong temptation within industry and government to dismiss the MIL-STD 188-125 approach in favor of less rigorous protection methods. It is important to understand that US DoD EMP protection standard for fixed facilities, MIL-STD-188-125, reflects an evolution by trial and error that spanned a period of decades beginning with the acquisition of the Minuteman Missile System in the …


Proposal For A Dod Combined Battlefield Electromagnetic Environmental Effects (E3) Initiative, George H. Baker Iii Nov 2017

Proposal For A Dod Combined Battlefield Electromagnetic Environmental Effects (E3) Initiative, George H. Baker Iii

George H Baker

The presentation emphasizes the growing importance of electromagnetic survivability and compatibility. Operation Desert Storm demonstrated the clear military advantage provided by sophisticated electronic weapon and communication systems. In addition, the offensive tactic of taking out the enemy's eyes and ears during the air war paid off, giving our military decisive air superiority. The lessons for the future are clear. High-tech electronics now so dominates the battlefield that the outcome of future conflicts could well be decided by electronics attrition rather than human casualties. Our Desert Storm experience thus accentuates the importance of guaranteeing that our electronic systems will not be …


Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii Nov 2017

Testimony Of Dr. George H. Baker, Senior Advisor To The Congressional Emp Commission, George H. Baker Iii

George H Baker

This is the script of testimony before the Federal Energy Regulatory Commission. It offers a vision for a future in which our electric power systems will be able to operate through or quickly recover from catastrophic failure due to electromagnetic pulse (EMP), cyber, and physical attacks. The scope of the term ‘EMP’ used in this testimony includes both naturally occurring solar storms and the more energetic man-made EMP hazards. The vision has been discussed with members of the electric power industry, and prominent EMP/cyber/physical protection advocates who find it to be supportable and actionable. The nature of EMP, cyber, and …


Introduction To Atomic Requirements, William L. Honig Oct 2017

Introduction To Atomic Requirements, William L. Honig

William L Honig

An introduction to requirements and the importance of making single atomic requirements statements. Atomic requirements have advantages and improve the requirements process, support requirement verification and validation, enable traceability, support testability of systems, and provide management advantages. Why has there been so little emphasis on atomic requirements?


Requirements Quick Notes, William L. Honig, Shingo Takada Oct 2017

Requirements Quick Notes, William L. Honig, Shingo Takada

William L Honig

A short introduction to requirements and their role in system development. Includes industry definition of requirements, overview of basic requirements process including numbering of requirements, ties to testing, and traceability. An introduction to requirements quality attributes (correct, unambiguous, etc.) Includes references to requirements process, numbering, and quality papers.


An Example Of Atomic Requirements - Login Screen, William L. Honig Oct 2017

An Example Of Atomic Requirements - Login Screen, William L. Honig

William L Honig

A simple example of what an atomic or individual or singular requirement statement should be. Using the example of the familiar login screen, shows the evolution from a low quality initial attempt at requirements to a complete atomic requirement statement. Introduces the idea of a system glossary to support the atomic requirement.


Requirements Metrics - Definitions Of A Working List Of Possible Metrics For Requirements Quality, William L. Honig Oct 2017

Requirements Metrics - Definitions Of A Working List Of Possible Metrics For Requirements Quality, William L. Honig

William L Honig

A work in progress to define a metrics set for requirements. Metrics are defined that apply to either the entire requirements set (requirements document as a whole) or individual atomic (or singular, individual) requirements statements. Requirements are identified with standard names and a identification scheme and include both subjective and objective measures. An example metric for the full set of requirements: Rd2 - Requirements Consistency, Is the set of atomic requirements internally consistent, with no contradictions, no duplication between individual requirements? An example of a metric for a single requirement: Ra4 - Requirement Verifiability, How adequately can this requirement be …


Atomic Requirements Quick Notes, William L. Honig, Shingo Takada Oct 2017

Atomic Requirements Quick Notes, William L. Honig, Shingo Takada

William L Honig

Working paper on atomic requirements for systems development and the importance of singular, cohesive, individual requirements statements. Covers possible definitions of atomic requirements, and their characteristics. Atomic requirements improve many parts of the development process from requirements to testing and contracting.


Further Cost Reduction Of Battery Manufacturing, Amir A. Asif, Rajendra Singh Sep 2017

Further Cost Reduction Of Battery Manufacturing, Amir A. Asif, Rajendra Singh

Amir Asif

The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV) and wind energy installation as well as electric vehicle (EV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion) and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in …


Emerging Role Of Photovoltaics For Sustainably Powering Underdeveloped, Emerging, And Developed Economies, Rajendra Singh, Amir A. Asif, Ganesh K. Venayagamoorthy, Akhlesh Lakhtakia, Mahmoud Abdelhamid, Githin F. Alapatt, David A. Ladner Sep 2017

Emerging Role Of Photovoltaics For Sustainably Powering Underdeveloped, Emerging, And Developed Economies, Rajendra Singh, Amir A. Asif, Ganesh K. Venayagamoorthy, Akhlesh Lakhtakia, Mahmoud Abdelhamid, Githin F. Alapatt, David A. Ladner

Amir Asif

With the advent of low-cost solar photovoltaic (PV) panels and our ability to generate, store, and use electrical energy locally without the need for long-range transmission, the world is about to witness transformational changes in electricity infrastructures. The use of DC electricity enhances systemwide efficiency. DC microgrids and nanogrids powered by solar PV systems and gigawatt batteries for electricity storage can sustainably power the needs of all human beings equitably and empower every individual. Ultralarge-scale manufacturing of PV systems and batteries, a vertically integrated business model, and a targeted monetary policy of quantitative easing can rapidly power all human activities.


Technical And Economic Assessment Of Perovskite Solar Cells For Large Scale Manufacturing, Amir A. Asif, Rajendra Singh, Githin F. Alapatt Sep 2017

Technical And Economic Assessment Of Perovskite Solar Cells For Large Scale Manufacturing, Amir A. Asif, Rajendra Singh, Githin F. Alapatt

Amir Asif

In this paper, we have carried out detailed technical and economic assessment of perovskite solar cells for large scale manufacturing. For ultra-small area of the order of 0.1 cm2, efficiency of 20% or so are reported. However, for area of 25 cm2, the efficiency is about 10%. Based on the photovoltaic module manufacturing requirements of no constraint on the supply of raw materials, low variability of every key process and process-induced defects, low cost of manufacturing, prospects for further cost reduction in the future, green manufacturing, and long-term reliability, there are absolutely no prospects of manufacturing …


Transformative Role Of Photovoltaics In Phasing Out Alternating Current Based Grid By Local Dc Power Networks For Sustainable Global Economic Growth, Rajendra Singh, Amir A. Asif, Ganesh K. Venayagamoorthy Sep 2017

Transformative Role Of Photovoltaics In Phasing Out Alternating Current Based Grid By Local Dc Power Networks For Sustainable Global Economic Growth, Rajendra Singh, Amir A. Asif, Ganesh K. Venayagamoorthy

Amir Asif

For sustainable global economic growth, eradication of global energy poverty and addressing climate challenges, free fuel based solar and wind energy sources are the only viable solution for electricity generation. Due to inherent advantages, photovoltaics has emerged as the major source of electrical power. Local generation of direct current (DC) power by PV and the use of batteries for storing electrical power have the potential of transforming global electricity infrastructure to address the problems faced by alternating current (AC) based centralized power generation and long haul transmission and distribution.


Grnsight: A Web Application And Service For Visualizing Models Of Small- To Medium-Scale Gene Regulatory Networks, Kam D. Dahlquist, John David N. Dionisio, Ben G. Fitzpatrick, Nicole A. Anguiano, Anindita Varshneya, Britain J. Southwick, Mihir Samdarshi Aug 2017

Grnsight: A Web Application And Service For Visualizing Models Of Small- To Medium-Scale Gene Regulatory Networks, Kam D. Dahlquist, John David N. Dionisio, Ben G. Fitzpatrick, Nicole A. Anguiano, Anindita Varshneya, Britain J. Southwick, Mihir Samdarshi

Ben G. Fitzpatrick

GRNsight is a web application and service for visualizing models of gene regulatory networks (GRNs). A gene regulatory network (GRN) consists of genes, transcription factors, and the regulatory connections between them which govern the level of expression of mRNA and protein from genes. The original motivation came from our efforts to perform parameter estimation and forward simulation of the dynamics of a differential equations model of a small GRN with 21 nodes and 31 edges. We wanted a quick and easy way to visualize the weight parameters from the model which represent the direction and magnitude of the influence of …


Room Temperature Operational Single Electron Transistor Fabricated By Focused Ion Beam Deposition, P. Santosh Kumar Karre, Paul Bergstrom Aug 2017

Room Temperature Operational Single Electron Transistor Fabricated By Focused Ion Beam Deposition, P. Santosh Kumar Karre, Paul Bergstrom

Paul Bergstrom

We present the fabrication and room temperature operation of single electron transistors using 8nm8nmtungsten islands deposited by focused ion beamdeposition technique. The tunnel junctions are fabricated using oxidation of tungsten in peracetic acid. Clear Coulomb oscillations, showing charging and discharging of the nanoislands, are seen at room temperature. The device consists of an array of tunnel junctions; the tunnel resistance of individual tunnel junction of the device is calculated to be as high as 25.13GΩ25.13GΩ. The effective capacitance of the array of tunnel junctions was found to be 0.499aF0.499aF, giving a charging energy of 160.6meV160.6meV.


Interfacial Thermal Transport In Monolayer Mos2- And Graphene-Based Devices, Zlatan Aksamija, Amin Salehi-Khojin, Cameron J. Foss, Arnab K. Majee, Fatemeh Khalili-Araghi Jul 2017

Interfacial Thermal Transport In Monolayer Mos2- And Graphene-Based Devices, Zlatan Aksamija, Amin Salehi-Khojin, Cameron J. Foss, Arnab K. Majee, Fatemeh Khalili-Araghi

Zlatan Aksamija

In many device architectures based on 2D materials, a major part of the heat generated in hot-spots dissipates in the through-plane direction where the interfacial thermal resistances can significantly restrain the heat removal
capability of the device. Despite its importance, there is an enormous (1–2 orders of magnitude) disagreement in the literature on the interfacial thermal transport characteristics of MoS2 and other transition metal dichalcogenides (TMDs) (0.1–14 MW m−2 K−1). In this report, the thermal boundary conductance (TBC) across MoS2 and graphene monolayers with SiO2/Si and sapphire substrates is systematically investigated using a
custom-made electrical thermometry platform followed by 3D …


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore Jun 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Russell C. Hardie

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Neural Networks Skin Tumor Diagnostic System, Zhao Zhang, William V. Stoecker, Randy Hays Moss Jun 2017

Neural Networks Skin Tumor Diagnostic System, Zhao Zhang, William V. Stoecker, Randy Hays Moss

Zhao Zhang

In this study, a malignant melanoma diagnostic system is designed using a straightforward neural network with the back-propagation learning algorithm. Eleven features are automatically extracted from skin tumor images. The correct diagnostic rate of this system is better than the average rate of 16 dermatologists who based their diagnosis with only the slide images.


A Novel Morphological Operator To Calculate Euler Number, Zhao Zhang, Randy Hays Moss, William V. Stoecker Jun 2017

A Novel Morphological Operator To Calculate Euler Number, Zhao Zhang, Randy Hays Moss, William V. Stoecker

Zhao Zhang

This paper introduces a novel morphological operator to calculate the Euler number for binary images. The operator is based on the condition of eight-connectedness for foreground and four-connectedness for background. It is significantly faster than the previous operators. The morphological operations used in border detection are discussed


On Non-Cooperative Multiple-Target Tracking With Wireless Sensor Networks, Ye Zhu, A. Vikram, Huirong Fu, Yong Guan Jun 2017

On Non-Cooperative Multiple-Target Tracking With Wireless Sensor Networks, Ye Zhu, A. Vikram, Huirong Fu, Yong Guan

Yong Guan

In this paper, we propose an approach to track multiple non-cooperative targets with wireless sensor networks. Most existing tracking algorithms can not be directly applied to non-cooperative target tracking because they assume the access to signals from individual targets for tracking by assuming that: 1) there is only one target in a field; 2) signals from different co-operative targets can be differentiated; or 3) interference caused by signals from other targets is negligible because of attenuation. We propose a general approach for tracking non-cooperative targets. The tracking algorithm first separates the aggregate signals from multiple indistinguishable targets via the blind …


Formalization Of Matrix Theory In Hol4, Zhiping Shi, Yan Zhang, Zhenke Liu, Xinan Kang, Yong Guan, Jie Zhang, Xiaoyu Song Jun 2017

Formalization Of Matrix Theory In Hol4, Zhiping Shi, Yan Zhang, Zhenke Liu, Xinan Kang, Yong Guan, Jie Zhang, Xiaoyu Song

Yong Guan

Matrix theory plays an important role in modeling linear systems in engineering and science. To model and analyze the intricate behavior of complex systems, it is imperative to formalize matrix theory in a metalogic setting. This paper presents the higherorder logic (HOL) formalization of the vector space and matrix theory in the HOL4 theorem proving system. Formalized theories include formal definitions of real vectors and matrices, algebraic properties, and determinants, which are verified in HOL4. Two case studies, modeling and verifying composite two-port networks and state transfer equations, are presented to demonstrate the applicability and effectiveness of our work.


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Jun 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Russell C. Hardie

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore Jun 2017

Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore

Russell C. Hardie

We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames …


Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai Jun 2017

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Russell C. Hardie

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation …


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


Soft Elastomeric Capacitor Network For Strain Sensing Over Large Surfaces, Simon Laflamme, Husaam S. Saleem, Bharath K. Vasan, Randall L. Geiger, Degang J. Chen, Michael R. Kessler, Krishna Rajan Jun 2017

Soft Elastomeric Capacitor Network For Strain Sensing Over Large Surfaces, Simon Laflamme, Husaam S. Saleem, Bharath K. Vasan, Randall L. Geiger, Degang J. Chen, Michael R. Kessler, Krishna Rajan

Randall Geiger

Field applications of existing sensing solutions to structural health monitoring (SHM) of civil structures are limited. This is due to economical and/or technical challenges in deploying existing sensing solutions to monitor geometrically large systems. To realize the full potential of SHM solutions, it is imperative to develop scalable cost-effective sensing strategies. We present a novel sensor network specifically designed for strain sensing over large surfaces. The network consists of soft elastomeric capacitors (SECs) deployed in an array form. Each SEC acts as a surface strain gage transducing local strain into changes in capacitance. Results show that the sensor network can …


A Scalable Unsegmented Multiport Memory For Fpga-Based Systems, Kevin R. Townsend, Osama Gamal Mohamed Attia, Phillip Harrison Jones, Joseph Zambreno Jun 2017

A Scalable Unsegmented Multiport Memory For Fpga-Based Systems, Kevin R. Townsend, Osama Gamal Mohamed Attia, Phillip Harrison Jones, Joseph Zambreno

Phillip Jones

On-chip multiport memory cores are crucial primitives for many modern high-performance reconfigurable architectures and multicore systems. Previous approaches for scaling memory cores come at the cost of operating frequency, communication overhead, and logic resources without increasing the storage capacity of the memory. In this paper, we present two approaches for designing multiport memory cores that are suitable for reconfigurable accelerators with substantial on-chip memory or complex communication. Our design approaches tackle these challenges by banking RAM blocks and utilizing interconnect networks which allows scaling without sacrificing logic resources. With banking, memory congestion is unavoidable and we evaluate our multiport memory …