Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Electrical and Computer Engineering

2016

Finite Difference Method

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Numerical Modeling Of Periodic Composite Media For Electromagnetic Shielding Application, Dagang Wu, Rui Qiang, Ji Chen, Ce Liu, Marina Koledintseva, James L. Drewniak, Bruce Archambeault Jul 2016

Numerical Modeling Of Periodic Composite Media For Electromagnetic Shielding Application, Dagang Wu, Rui Qiang, Ji Chen, Ce Liu, Marina Koledintseva, James L. Drewniak, Bruce Archambeault

James K. Wu, M.D.

This paper describes a methodology to extract effective electrical properties for periodic composite medium. The extraction algorithm is based on a periodic finite-difference time-domain (FDTD) method. The results are compared with conventional mixing theories and 3D Fourier series expansion methods. Two results show satisfactory agreement. With the extracted effective permittivity and conductivity, one can readily use these parameters to study electrical properties of composite materials with arbitrary micro-geometry and the shielding effects of using composite materials.


Representation Of Permittivity For Multiphase Dielectric Mixtures In Fdtd Modeling, Marina Koledintseva, J. Wu, H. Zhang, James L. Drewniak, Konstantin Rozanov Jul 2016

Representation Of Permittivity For Multiphase Dielectric Mixtures In Fdtd Modeling, Marina Koledintseva, J. Wu, H. Zhang, James L. Drewniak, Konstantin Rozanov

James K. Wu, M.D.

A simple method of approximating frequency characteristics of composites in a form convenient for time-domain numerical modeling is proposed. The frequency characteristics can be obtained from experiment or calculations based on the Maxwell Garnett mixing formalism. The resultant frequency characteristic might be of a complex shape corresponding to a combination of a number of absorption peaks. The approximation is made by a series of Debye-like terms using a genetic algorithm (GA). This leads to the necessity of taking a number of terms in the approximating series. Every term corresponds to its pole, i.e., the frequency where the maximum loss occurs. …