Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Electrical and Computer Engineering

2013

Shunt

Articles 1 - 4 of 4

Full-Text Articles in Engineering

End-To-End Modeling For Variability And Reliability Analysis Of Thin Film Pv, Sourabh Dongaonkar, Muhammad Alam Mar 2013

End-To-End Modeling For Variability And Reliability Analysis Of Thin Film Pv, Sourabh Dongaonkar, Muhammad Alam

Sourabh Dongaonkar

We present an end-to-end modeling framework, spanning the device, module and also system levels, for analyzing thin film photovoltaics (PV). This approach is based on embedding a detailed, statistically relevant, physics based equivalent circuit into module and array level simulations. This approach enables us to analyze key variability and reliability issues in thin film PV, and allows us to interpret their effect on process yield and intrinsic module lifetimes. Our results suggest that the time-zero gap between cell and module efficiencies, a key variability concern for thin-film PV, can be attributed to processrelated shunts with log-normal PDF distributed randomly across …


Reverse Stress Metastability Of Shunt Current In Cigs Solar Cells, Sourabh Dongaonkar, Erik Sheets, Rakesh Agrawal, Muhammad Alam Mar 2013

Reverse Stress Metastability Of Shunt Current In Cigs Solar Cells, Sourabh Dongaonkar, Erik Sheets, Rakesh Agrawal, Muhammad Alam

Sourabh Dongaonkar

Partial shading in thin film solar panels can result in reverse bias stress across shaded cells. Therefore, it is important to understand the effect of such reverse stress in commercially competitive PV technologies such as CIGS. In this paper, we systematically investigate the effect of moderate reverse bias on solution-processed CIGS solar cells. We subject the solar cells to varying degrees of reverse biases and continuously monitor the impact of the stress on dark current. We also explore the relaxation behavior of dark current following passive storage and the long term effect of the shadow stress on power output of …


A Physical Model For Non-Ohmic Shunt Conduction And Metastability In Amorphous Silicon P-I-N Solar Cells, Sourabh Dongaonkar, Karthik Y, Souvik Mahapatra, Muhammad Alam Mar 2013

A Physical Model For Non-Ohmic Shunt Conduction And Metastability In Amorphous Silicon P-I-N Solar Cells, Sourabh Dongaonkar, Karthik Y, Souvik Mahapatra, Muhammad Alam

Sourabh Dongaonkar

We present a physical model of non-ohmic shunt current in a-Si:H p-i-n solar cells, and validate it with detailed measurements. This model is based on space-charge-limited (SCL) transport through localized p-i-p shunt paths, which can arise from contact metal incorporation in a-Si:H layer. This model explains both the electrical characteristics and the metastable switching behavior of the shunts within an integrated framework. We first verify the SCL model using simulations and statistically robust measurements, and then use this picture to analyze our systematic observations of non-volatile switching in these shunts. Our work not only resolves broad experimental observations on shunt …


Physics And Statistics Of Non-Ohmic Shunt Conduction And Metastability In Amorphous Silicon P-I-N Solar Cells, Sourabh Dongaonkar, Karthik Yogendra, Souvik Mahapatra, Muhammad Alam Mar 2013

Physics And Statistics Of Non-Ohmic Shunt Conduction And Metastability In Amorphous Silicon P-I-N Solar Cells, Sourabh Dongaonkar, Karthik Yogendra, Souvik Mahapatra, Muhammad Alam

Sourabh Dongaonkar

In this paper, we present a physical model of the non- Ohmic shunt current ISH in amorphous silicon (a-Si:H) p–i–n solar cells and validate it with detailed measurements. This model is based on space-charge-limited (SCL) transport through localized p–i–p shunt paths. These paths can arise from n-contact metal incorporation in the a-Si:H layer, causing the (n)a-Si:H to be counterdoped to p-type. The model not only explains all the electrical characteristics of preexisting shunts but also provides insight into the metastable switching that is observed in the shunt-dominated region of dark current as well.We first verify the SCL model using simulations …