Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Electrical and Computer Engineering

Carmine Vittoria

2015

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria Dec 2015

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria

Carmine Vittoria

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria Dec 2015

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria

Carmine Vittoria

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.