Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin Aug 2018

Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Stationary Hall thrusters are electric, moderate-specific impulse propulsion systems developed in Russia. These devices manipulate electric and magnetic fields to expel ionized gas (plasma) components, resulting in thrust. The success of Hall-effect engines in USSR satellite-transfer missions quickly sparked western interest in the design. Extensive government and academic study commenced shortly after the dissolution of the Soviet Union, when the technology was made available to the United States. The common SPT-100 model was the primary subject of such studies. Unfortunately, limited literature exists for rare and uncommon Hall thruster models. The T-100-3 stationary plasma thruster suffers from this gap; few …


Modeling Of A Roll-To-Roll Plasma Cvd System For Graphene, Yudong Chen, Majed A. Alrefae, Anurag Kumar, Timothy S. Fisher Aug 2016

Modeling Of A Roll-To-Roll Plasma Cvd System For Graphene, Yudong Chen, Majed A. Alrefae, Anurag Kumar, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2D carbon material that has extraordinary physical properties relevant to many industrial applications such as electronics, oxidation barrier and biosensors. Roll-to-roll plasma chemical vapor deposition (CVD) has been developed to manufacture graphene at large scale. In a plasma CVD chamber, graphene is grown on a copper foil as it passes through a high-temperature plasma region. The temperatures of the gas and the copper foil play important roles in the growth of graphene. Consequently, there is a need to understand the temperature and gas velocity distributions in the system. The heat generated in the plasma creates a thermal …


Effect Of Carbon Impurity On Molybdenum Nanostructure Evolution Under Helium Ion Irradiation In Extreme Conditions, Nikhil A. Bharadwaj, Jitendra Tripathi, Ahmed Hassanein, Sean Gonderman Aug 2015

Effect Of Carbon Impurity On Molybdenum Nanostructure Evolution Under Helium Ion Irradiation In Extreme Conditions, Nikhil A. Bharadwaj, Jitendra Tripathi, Ahmed Hassanein, Sean Gonderman

The Summer Undergraduate Research Fellowship (SURF) Symposium

The performance of plasma facing components (PFC) is of great important for the realization of prototype nuclear fusion. Tungsten has been considered as the leading high-Z PFC material for these reactors and tokamaks due to its superior thermophysical properties, high melting point, low sputtering yield, and low tritium inventory. However, its surface deteriorates significantly under helium ion irradiation in extreme (fusion) conditions and forms nanoscopic fiber like structures (fuzz) Recent studies show that the formation of fuzz nanostructure on tungsten can be suppressed by the presence of plasma impurities such as carbon and beryllium. In the present study, the effects …


Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko Aug 2015

Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Roll-to-roll radio frequency plasma enhanced chemical vapor deposition (R2R RFCVD) is a technique for large-scale synthesis of high quality graphitic nanopetals. Graphitic nanopetals are petal-like graphene structures with remarkable electrical and mechanical properties with major industrial applications such as microsupercapacitors. RFCVD uses a non-equilibrium plasma with high energy electrons to catalyze chemical reactions, induce the creation of free radicals, and promote otherwise high temperature chemistry in a low temperature environment. Understanding how bulk plasma characteristics (particularly, power and number densities) vary with changing reactor parameters is an important step towards optimizing synthesis techniques. In our present work we use the …


Numerical Simulation Of Hydrogen Plasma In Mpcvd Reactor, Di Huang Jul 2014

Numerical Simulation Of Hydrogen Plasma In Mpcvd Reactor, Di Huang

Open Access Theses

A numerical study was conducted to build a model able to estimate the plasma properties under different working conditions for pure hydrogen plasma in a MPCVD reactor. A plasma model based on standing wave assumption and a linear estimation of ne and coupled the EM simulation, heat transfer simulation and UDF calculations of plasma properties was built in COMSOL Muitiphysics and tested with six different working conditions. The reliability of COMSOL EM solver was tested through comparing the simulation results with a benchmark EM solver, ANSYS HFSS. The validities of two assumptions made about the electrical field, standing wave assumption …


Plasma Arc Torch Technology, Purdue Ect Team Jan 2007

Plasma Arc Torch Technology, Purdue Ect Team

ECT Fact Sheets

For many years, in-situ thermal vitrification has been recognized as one method to remediate contaminated soils and help stabilize land fills. However, the complexity of the process and the uncertainty of the results have limited the use of this remediation technique.A plasma is a gas that has been ionized by the electric arc of a plasma torch and can therefore respond to electrical and magnetic fields. Plasma arc technology can create plasma using almost any type of gas (oxygen, nitrogen, carbon monoxide, air, etc.) and in a wide range of pressures (vacuum to 20 atmospheres).The process of plasma remediation of …