Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Flight Simulator Modeling Using Recurrent Neural Networks, Nickolas Sabatini, Andreas Natsis Oct 2020

Flight Simulator Modeling Using Recurrent Neural Networks, Nickolas Sabatini, Andreas Natsis

Undergraduate Research & Mentoring Program

Recurrent neural networks (RNNs) are a form of machine learning used to predict future values. This project uses RNNs tor predict future values for a flight simulator. Coded in Python using the Keras library, the model demonstrates training loss and validation loss, referring to the error when training the model.


The Applications Of Grid Cells In Computer Vision, Keaton Kraiger Apr 2019

The Applications Of Grid Cells In Computer Vision, Keaton Kraiger

Undergraduate Research & Mentoring Program

In this study we present a novel method for position and scale invariant object representation based on a biologically-inspired framework. Grid cells are neurons in the entorhinal cortex whose multiple firing locations form a periodic triangular array, tiling the surface of an animal’s environment. We propose a model for simple object representation that maintains position and scale invariance, in which grid maps capture the fundamental structure and features of an object. The model provides a mechanism for identifying feature locations in a Cartesian plane and vectors between object features encoded by grid cells. It is shown that key object features …


Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods Jan 2019

Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods

Undergraduate Research & Mentoring Program

In machine learning research, adversarial examples are normal inputs to a classifier that have been specifically perturbed to cause the model to misclassify the input. These perturbations rarely affect the human readability of an input, even though the model’s output is drastically different. Recent work has demonstrated that image-classifying deep neural networks (DNNs) can be reliably fooled with the modification of a single pixel in the input image, without knowledge of a DNN’s internal parameters. This “one-pixel attack” utilizes an iterative evolutionary optimizer known as differential evolution (DE) to find the most effective pixel to perturb, via the evaluation of …


Combining Algorithms For More General Ai, Mark Robert Musil May 2018

Combining Algorithms For More General Ai, Mark Robert Musil

Undergraduate Research & Mentoring Program

Two decades since the first convolutional neural network was introduced the AI sub-domains of classification, regression and prediction still rely heavily on a few ML architectures despite their flaws of being hungry for data, time, and high-end hardware while still lacking generality. In order to achieve more general intelligence that can perform one-shot learning, create internal representations, and recognize subtle patterns it is necessary to look for new ML system frameworks. Research on the interface between neuroscience and computational statistics/machine learning has suggested that combined algorithms may increase AI robustness in the same way that separate brain regions specialize. In …


Early Emerging Pathogen Detection, Mackenzie Wangenstein Jan 2018

Early Emerging Pathogen Detection, Mackenzie Wangenstein

Undergraduate Research & Mentoring Program

A supervised learning technique was employed to identify emerging pathogen species. Portland State University has partnered with the University of New Mexico to take encodings of unknown pathogen molecular structures to determine emerging species.


Sparse Adaptive Local Machine Learning Algorithms For Sensing And Analytics, Jack Cannon Jan 2016

Sparse Adaptive Local Machine Learning Algorithms For Sensing And Analytics, Jack Cannon

Undergraduate Research & Mentoring Program

The goal of digital image processing is to capture, transmit, and display images as efficiently as possible. Such tasks are computationally intensive because an image is digitally represented by large amounts of data. It is possible to render an image by reconstructing it with a subset of the most relevant data. One such procedure used to accomplish this task is commonly referred to as sparse coding. For our purpose, we use images of handwritten digits that are presented to an artificial neural network. The network implements Rozell's locally competitive algorithm (LCA) to generate a sparse code. This sparse code is …